Abstract

We report a strictly single-mode optical fiber with a record core diameter of 84µm and an effective mode area of ~3600µm2 at 1µm. We also demonstrate fundamental mode operation in an optical fiber with a record core diameter of 252µm and a measured mode field diameter (MFD) of 149µm at 1.03µm, i.e. an effective mode area (Aeff) of ~17,400µm2 at 1.03µm, an Aeff of 31,600µm2 at 1.5µm. All these fibers have near parabolic index profiles with a peak refractive index difference ΔN≈~6×10-5, i.e. a record low numerical aperture (NA) of ~0.013 in an optical fiber. This low refractive index difference was achieved by frozen-in thermal stress as a result of two different types of glass in the fibers. When the fundamental mode was excited in the 252µm core fiber using a 1.03µm ASE source, the output beam was measured to have M2x=1.04 and M2y=1.18.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef]
  2. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [CrossRef]
  3. C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
    [CrossRef]
  4. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [CrossRef]
  5. L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. T. Thomas, M. Moore, L. B. Fu, and M. E. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170μm,” Conference on Lasers and Electro-optics, post-deadline paper CPDB6, San Jose, CA, May 2008.
  6. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [CrossRef]
  7. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [CrossRef]
  8. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef]
  9. A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
  10. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
    [CrossRef]
  11. K. Brugger, “Effects of thermal stress on refractive index in clad fibers,” Appl. Opt. 10(2), 437–438 (1971).
    [CrossRef]
  12. U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stress in drawing of optical fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
    [CrossRef]
  13. R. A. Sammut and P. L. Chu, “Axial stress and its effect on relative strength of polarization-maintaining fibers and preforms,” J. Lightwave Technol. LT-3(2), 283–287 (1985).
    [CrossRef]
  14. Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
    [CrossRef]
  15. B. Ortaç, M. Baumgartl, O. Schmidt, and J. Limpert, “μJ-level femtosecond and picosecond fiber oscillators,” MB15,OSA, Advanced Solid-State Photonics 2009.
  16. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  17. L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008).
    [CrossRef]
  18. M. Born, and E. Wolf, “Principle of Optics,” Pergamon Press, 1991.

2008 (1)

L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008).
[CrossRef]

2007 (2)

L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
[CrossRef]

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).

2006 (5)

2005 (1)

2000 (1)

1998 (1)

1987 (1)

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
[CrossRef]

1985 (1)

R. A. Sammut and P. L. Chu, “Axial stress and its effect on relative strength of polarization-maintaining fibers and preforms,” J. Lightwave Technol. LT-3(2), 283–287 (1985).
[CrossRef]

1975 (1)

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stress in drawing of optical fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

1971 (1)

Abe, T.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
[CrossRef]

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

Brugger, K.

Cheng, M. Y.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).

Chu, P. L.

R. A. Sammut and P. L. Chu, “Axial stress and its effect on relative strength of polarization-maintaining fibers and preforms,” J. Lightwave Technol. LT-3(2), 283–287 (1985).
[CrossRef]

Deguil-Robin, N.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

Dimarcello, F. V.

Dong, L.

L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008).
[CrossRef]

L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
[CrossRef]

Ermeneux, S.

Fermann, M. E.

Fini, J. M.

Fu, L.B.

L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).

Ghalmi, S.

Goldberg, L.

Hanawa, F.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
[CrossRef]

Hibino, Y.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
[CrossRef]

Hou, K. C.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).

Jakobsen, C.

Kliner, D. A. V.

Koplow, J. P.

Kurkjian, C. R.

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stress in drawing of optical fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

Li, J.

Liao, K. H.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).

Liem, A.

Limpert, J.

Manek-Hönninger, I.

Mckay, H. A.

L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008).
[CrossRef]

Monberg, E.

Nicholson, J. W.

Nolte, S.

Paek, U. C.

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stress in drawing of optical fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

Peng, X.

Petersson, A.

Ramachandran, S.

Röser, F.

Rothhardt, J.

Russell, P. St. J.

Salin, F.

Sammut, R. A.

R. A. Sammut and P. L. Chu, “Axial stress and its effect on relative strength of polarization-maintaining fibers and preforms,” J. Lightwave Technol. LT-3(2), 283–287 (1985).
[CrossRef]

Schmidt, O.

Schreiber, T.

Shibata, S.

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
[CrossRef]

Tünnermann, A.

Wisk, P.

Yan, M. F.

Yvernault, P.

Zellmer, H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987).
[CrossRef]

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).

J. Am. Ceram. Soc. (1)

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stress in drawing of optical fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

J. Lightwave Technol. (2)

R. A. Sammut and P. L. Chu, “Axial stress and its effect on relative strength of polarization-maintaining fibers and preforms,” J. Lightwave Technol. LT-3(2), 283–287 (1985).
[CrossRef]

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Opt.Lett (1)

L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008).
[CrossRef]

Other (3)

M. Born, and E. Wolf, “Principle of Optics,” Pergamon Press, 1991.

B. Ortaç, M. Baumgartl, O. Schmidt, and J. Limpert, “μJ-level femtosecond and picosecond fiber oscillators,” MB15,OSA, Advanced Solid-State Photonics 2009.

L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. T. Thomas, M. Moore, L. B. Fu, and M. E. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170μm,” Conference on Lasers and Electro-optics, post-deadline paper CPDB6, San Jose, CA, May 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Fiber cross section under optical microscope (b) Refractive index scan through thecenter of the fiber II.

Fig. 2.
Fig. 2.

Experimental setup for imaging the mode profile of a fiber. MM Fiber: multi-mode fiber coupled light From white light for illumination, L1: lens (f=8mm), L2: lens, L3: lens (f=15mm), Filter: ~10nm bandwidth, SMF: Hi1060 (Corning).

Fig. 3.
Fig. 3.

Captued mode profile at 1 µm in fiber I (The top color bar is the intensity in linear scale).

Fig. 4.
Fig. 4.

Measured modes at ~1µm in fiber I while lens L2 was moved away from the optimaltransverse position and then back.

Fig. 5.
Fig. 5.

Measured modes at various wavelengths in the fiber I with a broad band supercontinuum sourceand a band-pass filter

Fig. 6.
Fig. 6.

(a) Captured mode image in fiber I when fiber endface was illuminated from side; (b) Captured mode image when launched power in fiber I was increased to saturate the CCD camera. (White dotted circles mark the location of the inner six low index rods.)

Fig. 7.
Fig. 7.

(a) Fundamental mode without illumination from side; (b) fundamental mode with illumination from side, (c) LP11 mode with illumination from side.

Fig. 8.
Fig. 8.

M2 measurement of the output beam from 133 µm core fiber II when exciting only the fundamental mode.

Fig. 9.
Fig. 9.

(a) Fundamental mode in fiber II without stress; (b) experimental setup; (c) mode with stress

Fig. 10.
Fig. 10.

(a) Microscope images of fiber III; (b) mode profile with the fundamental mode excited in the center core(red curves: Gaussian fit).

Fig. 11.
Fig. 11.

Fundamental modes propagation was observed in the pure silica core of the 2nd ring in (a), (b), (c), (d), and (f) respectively by adjusting launching positions of the input 1µm ASE from Yb fiber source.

Fig. 12.
Fig. 12.

(a) Microscope images of the fiber IV and (b) refractive index scan of the fiber IV along x axis.

Fig. 13.
Fig. 13.

(a) Fundamental mode image captured in the center core of fiber IV (Red curve): Gaussian fit(b) M2 measurement of the output mode in the 252 µm core fiber IV.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ nr =B2 σr B1(σθ+σz)
Δ nθ =B2 σθ B1(σr+σz)
Δ nz =B2 σz B1(σr+σθ)

Metrics