Abstract

We have designed, fabricated and characterized poly(dimethylsiloxane) (PDMS) single-mode rib waveguides. PDMS was chosen specifically for the core and cladding. Combined with the soft lithography fabrication techniques, it enables an easy integration of microoptical components for lab-on-a-chip systems. The refractive index contrast, Δ of 0.07% between the core and cladding for single-mode propagation was achieved by modifying the properties of the same base material. Alternatively, a higher refractive index contrast, Δ of 1.18% was shown by using PDMS materials from two different manufacturers. The fabricated rib waveguides were characterized for mode profile characteristics and confirmed the excitation of the fundamental mode of the waveguide. The propagation loss of the single-mode rib waveguide was characterized using the cutback measurement method at a wavelength of 635 nm and found to be 0.48 dB/cm for Δ of 0.07% and 0.20 dB/cm for Δ of 1.18%. Y-branch splitter of PDMS single-mode rib waveguide was further demonstrated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
    [CrossRef]
  2. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
    [CrossRef]
  3. E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).
  4. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
    [CrossRef]
  5. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [CrossRef]
  6. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
    [CrossRef]
  7. B. G. Splawn and F. E. Lytle, “On-chip absorption measurements using an integrated waveguide,” Anal. Bioanal. Chem. 373(7), 519–525 (2002).
    [CrossRef]
  8. D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” IEEE J. Lightwave Technol. 6(6), 2088–2093 (2005).
    [CrossRef]
  9. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
    [CrossRef]
  10. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
    [CrossRef]
  11. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971 (1991).
    [CrossRef]
  12. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 16(10), 1851 (1998).
    [CrossRef]
  13. J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
    [CrossRef]
  14. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
    [CrossRef]
  15. K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
    [CrossRef]
  16. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [CrossRef]
  17. F. Ladouceur, “Roughness, Inhomogeneity, and Integrated Optics,” IEEE J. Lightwave Technol. 15(6), 1020–1025 (1997).
    [CrossRef]

2008

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[CrossRef]

2007

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
[CrossRef]

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef]

2005

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” IEEE J. Lightwave Technol. 6(6), 2088–2093 (2005).
[CrossRef]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

2004

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

2003

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef]

2002

B. G. Splawn and F. E. Lytle, “On-chip absorption measurements using an integrated waveguide,” Anal. Bioanal. Chem. 373(7), 519–525 (2002).
[CrossRef]

1998

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 16(10), 1851 (1998).
[CrossRef]

1997

F. Ladouceur, “Roughness, Inhomogeneity, and Integrated Optics,” IEEE J. Lightwave Technol. 15(6), 1020–1025 (1997).
[CrossRef]

1994

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

1991

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971 (1991).
[CrossRef]

Belotti, M.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Benson, T. M.

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

Büttgenbach, S.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef]

Cai, D.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
[CrossRef]

Cambril, E.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

Chan, S. P.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

Chang-Yen, D. A.

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” IEEE J. Lightwave Technol. 6(6), 2088–2093 (2005).
[CrossRef]

Chen, Y.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Eich, R. K.

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” IEEE J. Lightwave Technol. 6(6), 2088–2093 (2005).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

Furniss, D.

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

Gale, B. K.

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” IEEE J. Lightwave Technol. 6(6), 2088–2093 (2005).
[CrossRef]

Huskens, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef]

Kee, J. S.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[CrossRef]

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
[CrossRef]

Kou, Q.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Kuswandi, B.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Ladouceur, F.

F. Ladouceur, “Roughness, Inhomogeneity, and Integrated Optics,” IEEE J. Lightwave Technol. 15(6), 1020–1025 (1997).
[CrossRef]

Lim, S. T.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

Liu, C.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Llobera, A.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef]

Lousteau, J.

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

Lytle, F. E.

B. G. Splawn and F. E. Lytle, “On-chip absorption measurements using an integrated waveguide,” Anal. Bioanal. Chem. 373(7), 519–525 (2002).
[CrossRef]

Neuzil, P.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[CrossRef]

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
[CrossRef]

Nuriman, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef]

Passaro, V. M. N.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971 (1991).
[CrossRef]

Png, C. E.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

Poenar, D. P.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[CrossRef]

Pogossian, S. P.

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 16(10), 1851 (1998).
[CrossRef]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
[CrossRef]

Reed, G. T.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

Ryu, K. S.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971 (1991).
[CrossRef]

Seddon, A. B.

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

Sewell, P.

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

Shaikh, K.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971 (1991).
[CrossRef]

Splawn, B. G.

B. G. Splawn and F. E. Lytle, “On-chip absorption measurements using an integrated waveguide,” Anal. Bioanal. Chem. 373(7), 519–525 (2002).
[CrossRef]

Studer, V.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Verboom, W.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef]

Verpoorte, E.

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).

Vescan, L.

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 16(10), 1851 (1998).
[CrossRef]

Vonsovici, A.

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 16(10), 1851 (1998).
[CrossRef]

Vukovic, A.

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

Wang, X.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Whitesides, G. M.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef]

Wilke, R.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Yobas, L.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[CrossRef]

Anal. Bioanal. Chem.

B. G. Splawn and F. E. Lytle, “On-chip absorption measurements using an integrated waveguide,” Anal. Bioanal. Chem. 373(7), 519–525 (2002).
[CrossRef]

Anal. Chim. Acta

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef]

Electrophoresis

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef]

IEEE J. Lightwave Technol.

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” IEEE J. Lightwave Technol. 6(6), 2088–2093 (2005).
[CrossRef]

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 16(10), 1851 (1998).
[CrossRef]

J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The Single-Mode Condition for Silicon-on-Insulator Optical Rib Waveguides with Large Cross Section,” IEEE J. Lightwave Technol. 22(8), 1923–1929 (2004).
[CrossRef]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides with Small Cross Section,” IEEE J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

F. Ladouceur, “Roughness, Inhomogeneity, and Integrated Optics,” IEEE J. Lightwave Technol. 15(6), 1020–1025 (1997).
[CrossRef]

IEEE J. Microelectromech. Syst.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A Method for Precision Patterning of Silicone Elastomer and Its Applications,” IEEE J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971 (1991).
[CrossRef]

Int. J. Electron. Commun.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” Int. J. Electron. Commun. 61(3), 163–167 (2007) (AEU).
[CrossRef]

Lab Chip

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef]

Microelectron. Eng.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73, 876–880 (2004).
[CrossRef]

Opt. Quantum Electron.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Sens. Actuators B Chem.

J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Monolithic Integration of Poly(dimethylsiloxane) Waveguides and Microfluidics for On-Chip Absorbance Measurements,” Sens. Actuators B Chem. 134(2), 532–538 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross-sectional view and geometrical parameters of a PDMS rib waveguide.

Fig. 2.
Fig. 2.

Simulation results of the design of the single-mode waveguide operating at a wavelength of 635 nm; a) Single-mode region with cutoff boundary lines for low refractive index contrast waveguide with an 8 µm width rib waveguide b) Bending radius loss for high refractive index contrast waveguide with 8 µm width, 4.5 µm rib height and 3.5 µm slab height.

Fig. 3.
Fig. 3.

Schematic diagram of the fabrication process of the PDMS-based single-mode rib waveguide.

Fig. 4.
Fig. 4.

Images of rib waveguides fabricated in PDMS: a) SEM image of an array of waveguides; b) Microscope image of the face end of waveguide c) SEM image of a single rib waveguide.

Fig. 5.
Fig. 5.

Beam profile studies on straight PDMS single-mode rib waveguides at a z-position of 5.5 cm: a) Simulation results of both FDTD for mode 1 & 2 and BPM; b) Face end image of output waveguide captured by CCD.

Fig. 6.
Fig. 6.

Measured propagation loss in the fabricated PDMS rib waveguides.

Fig. 7.
Fig. 7.

Y-branch power splitter output face end image; a) Branch gap of 20 µm and ;b) Branch gap of 50 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

WHα+r1r2
0.5r1.0

Metrics