Abstract

This paper presents a quasi-distributed, long-gauge, sensor system for measurement optical path length variation. This system can be directly applied to long gauge strain and/or temperature sensing. The proposed sensor system is comprised of sensing fiber, which is divided into the sensor’s segments separated by semi reflective mirrors made out of standard optical connectors. Short duration radio-frequency modulated optical bursts are launched into the sensing fiber and phase differences among individual reflected bursts are measured to determine the optical path-length variations among neighboring mirrors. Twenty sensing fiber segments were successfully addressed by a single-signal processor, while relying on standard telecommunication PIN diode, and a Fabry Perot laser diode. The resolution of a fiber-length variation better than 5 µm was demonstrated in practice. Since the long sections of fiber can be employed for constructing individual sensors within the sensor’s array, a microstrain resolution can be achieved in practice. The drift of the sensor’s system can be predominantly attributed to the temperature sensitivity of the electronic components, which proved to be below 20 µm/°C. The entire system relies on simple and widely-used components that are low-cost.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Rowe, E. O. Rausch, and P. D. Dean, “Embedded optical fiber strain sensor for composite structure applications,” Proc. SPIE 718, 266–273 (1986).
  2. J. S. Schoenwald, “An amplitude-modulated laser-driven fiber optic RF interferometric strain sensor (FORISS),” Proc. SPIE 1418, 450–458 (1991).
    [CrossRef]
  3. A. Eyal, O. Dimenstein, M. Tur, M. Zaidman, A. Green, and S. Gali, “Polarization mode dispersion in radio-frequency interferometric embedded fiber-optic sensors,” J. Lightwave Technol. 19(4), 504–511 (2001).
    [CrossRef]
  4. G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).
  5. E. O. Rausch and P. B. Ruffin, “Fiber optic strain sensing with RF interferometric techniques,” Proc. SPIE 1170, 440–450 (1989).
  6. J. Plucinski, P. Wierzba, and B. B. Kosmowski, “Time-of-flight optic sensors for strain and temperature measurement,” Proc. SPIE 5952, 379–382 (2005).
  7. G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
    [CrossRef]
  8. V. Lyöri, A.Kilpelä, G. Duan, A Mäntyniemi, J. Kostamovaara, “Pulsed time-of-flight radar for fiber-optic strain sensing,” Rev. Sci. Instrum. 78, 024705–1 - 024705–8 (2007).
  9. E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
    [CrossRef]
  10. K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
    [CrossRef]

2007 (1)

G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).

2005 (3)

J. Plucinski, P. Wierzba, and B. B. Kosmowski, “Time-of-flight optic sensors for strain and temperature measurement,” Proc. SPIE 5952, 379–382 (2005).

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[CrossRef]

2001 (1)

1995 (1)

K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
[CrossRef]

1991 (1)

J. S. Schoenwald, “An amplitude-modulated laser-driven fiber optic RF interferometric strain sensor (FORISS),” Proc. SPIE 1418, 450–458 (1991).
[CrossRef]

1989 (1)

E. O. Rausch and P. B. Ruffin, “Fiber optic strain sensing with RF interferometric techniques,” Proc. SPIE 1170, 440–450 (1989).

1986 (1)

W. J. Rowe, E. O. Rausch, and P. D. Dean, “Embedded optical fiber strain sensor for composite structure applications,” Proc. SPIE 718, 266–273 (1986).

Abe, K.

K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
[CrossRef]

Carr, J. J.

K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
[CrossRef]

Cibula, E.

Culshaw, B.

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Daneshvar, O.

K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
[CrossRef]

Dean, P. D.

W. J. Rowe, E. O. Rausch, and P. D. Dean, “Embedded optical fiber strain sensor for composite structure applications,” Proc. SPIE 718, 266–273 (1986).

Dimenstein, O.

Dong, F.

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Donlagic, D.

Eyal, A.

Gali, S.

Glisic, B.

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Green, A.

Inaudi, D.

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Jiang, G.

G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).

Knight, V.

G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).

Kosmowski, B. B.

J. Plucinski, P. Wierzba, and B. B. Kosmowski, “Time-of-flight optic sensors for strain and temperature measurement,” Proc. SPIE 5952, 379–382 (2005).

Massaro, G.

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Peters, K.

G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).

Plucinski, J.

J. Plucinski, P. Wierzba, and B. B. Kosmowski, “Time-of-flight optic sensors for strain and temperature measurement,” Proc. SPIE 5952, 379–382 (2005).

Rausch, E. O.

E. O. Rausch and P. B. Ruffin, “Fiber optic strain sensing with RF interferometric techniques,” Proc. SPIE 1170, 440–450 (1989).

W. J. Rowe, E. O. Rausch, and P. D. Dean, “Embedded optical fiber strain sensor for composite structure applications,” Proc. SPIE 718, 266–273 (1986).

Rowe, W. J.

W. J. Rowe, E. O. Rausch, and P. D. Dean, “Embedded optical fiber strain sensor for composite structure applications,” Proc. SPIE 718, 266–273 (1986).

Ruffin, P. B.

E. O. Rausch and P. B. Ruffin, “Fiber optic strain sensing with RF interferometric techniques,” Proc. SPIE 1170, 440–450 (1989).

Schoenwald, J. S.

J. S. Schoenwald, “An amplitude-modulated laser-driven fiber optic RF interferometric strain sensor (FORISS),” Proc. SPIE 1418, 450–458 (1991).
[CrossRef]

Thursby, G.

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Tur, M.

Vickle, P. V.

G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).

Wierzba, P.

J. Plucinski, P. Wierzba, and B. B. Kosmowski, “Time-of-flight optic sensors for strain and temperature measurement,” Proc. SPIE 5952, 379–382 (2005).

Yoshida, K.

K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
[CrossRef]

Zaidman, M.

Appl. Opt. (1)

J. Lightwave Technol. (2)

K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr, “Photo-Elastic Correction Factor for Fiber Strain Measurements in a Cable Under Tensile Load,” J. Lightwave Technol. 13(1), 1–5 (1995).
[CrossRef]

A. Eyal, O. Dimenstein, M. Tur, M. Zaidman, A. Green, and S. Gali, “Polarization mode dispersion in radio-frequency interferometric embedded fiber-optic sensors,” J. Lightwave Technol. 19(4), 504–511 (2001).
[CrossRef]

Proc. SPIE (5)

W. J. Rowe, E. O. Rausch, and P. D. Dean, “Embedded optical fiber strain sensor for composite structure applications,” Proc. SPIE 718, 266–273 (1986).

J. S. Schoenwald, “An amplitude-modulated laser-driven fiber optic RF interferometric strain sensor (FORISS),” Proc. SPIE 1418, 450–458 (1991).
[CrossRef]

E. O. Rausch and P. B. Ruffin, “Fiber optic strain sensing with RF interferometric techniques,” Proc. SPIE 1170, 440–450 (1989).

J. Plucinski, P. Wierzba, and B. B. Kosmowski, “Time-of-flight optic sensors for strain and temperature measurement,” Proc. SPIE 5952, 379–382 (2005).

G. Thursby, F. Dong, B. Culshaw, G. Massaro, B. Glisic, and D. Inaudi, “An improved fibre optic strain sensor for gas tank monitoring with rf subcarrier phase and I&Q demodulation technique,” Proc. SPIE 5758, 381–389 (2005).
[CrossRef]

Sens. Actuators A Phys. (1)

G. Jiang, P. V. Vickle, K. Peters, and V. Knight, “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements,” Sens. Actuators A Phys. 135(2), 443–450 (2007).

Other (1)

V. Lyöri, A.Kilpelä, G. Duan, A Mäntyniemi, J. Kostamovaara, “Pulsed time-of-flight radar for fiber-optic strain sensing,” Rev. Sci. Instrum. 78, 024705–1 - 024705–8 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Basic concept of quasi-distributed radiofrequency optical sensor system.

Fig. 2.
Fig. 2.

Timing diagram of quasi-distributed fiber optic radiofrequency optical sensor system.

Fig. 3.
Fig. 3.

Reflectivity and transmission versus etching time for mirrors made out of polished connector (λ=1310 nm)

Fig. 4.
Fig. 4.

Setup for determinating sensor resolution

Fig. 5.
Fig. 5.

Results of 9 etched connector mirrors used in one coupler arm (a) transmission (b) reflectivity (c) relative collateral losses

Fig. 6.
Fig. 6.

Reflected optical signal from 10 mirrors as measured by a digital communication analyzer HP83480A.

Fig. 7.
Fig. 7.

Measured sensors static characteristics.

Fig. 8.
Fig. 8.

Each sensor in the network was displaced for about 70 µm: a) raw voltages as measured by observation of individual mirrors; b) subtracted neighboring voltages representing displacements of individual sensor segments.

Fig. 9.
Fig. 9.

Output voltage change (a) for individual mirrors (10 mirrors in total) when the temperature of signal processor is increased for 10 °C (b).

Fig. 10.
Fig. 10.

Heating of the optoelectronic signal processor for 10 °C - voltage differences obtained by addressing of neighboring mirrors (corresponding to individual sensors drift in the network)

Fig. 11.
Fig. 11.

Voltages obtained from an individual mirror for long term testing

Fig. 12.
Fig. 12.

Subtracted voltages of two neighboring mirrors for-long term drift

Fig. 13.
Fig. 13.

Loading and unloading of a single sensor in the system by weights: a) Fiber is elongated for 120 µm, bandwidth of the system is 15 kHz b.) Fiber is elongated for 35 µm, bandwidth is 500 Hz c.) Fiber is elongated for 5.5 µm, bandwidth is 1 Hz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Td =2.d.nc ,
ΛOPV =Λ2 =cn1fOSC2
PCL =PIPTPRPI
U=2×2×(UL1UL0)OPVΛ D=4ΔUL nfOSCc TSETP OPV
Δ U=8 k nfOSCc TSETp Δ UL PFE
U=1.45×PFE=S×PFE
U =S×L×ε
Δ U=8 nfOSCc TSETP Δ UL L dndt Δ T
Δ ϕ =± 2 π nΔfc (2L0)

Metrics