Abstract

Extension of the dynamic range of liquid crystal tunable Lyot filter is demonstrated by incorporating with it a liquid crystal variable retarder as an eliminator for the third and fourth order peaks. The filter is continuously tunable in the range 500 nm to 900 nm with a nominal width in the range 50nm-100nm. Design procedure is described including the exact solution to the LC director profile and the suitability for biomedical optical imaging applications. Flexibility in the design is proposed by applying different voltages to the different liquid crystal retarders thus compensating for small thickness deviations from the nominal values and obtaining the high dynamic range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Wave in Crystals (John Wiley, New York, 1984).
  2. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  3. S. Saeed, P. J. Bos, and Z. Li, "A method of generating full color in a liquid crystal display using birefringent filters," Jpn. J. Appl. Phys. 40,3266-3271 (2001).
    [CrossRef]
  4. G. D. Sharp and K. M. Johnson, "A new RGB tunable filter technology," Proc. SPIE 12, 98-105 (1996).
    [CrossRef]
  5. S. Saeed and P. Bos, "Multispectrum, spatially addressable polarization interference filter," J. Opt. Soc. Am. A 19, 2301-2312 (2002).
    [CrossRef]
  6. S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 - 938 (2007).
    [CrossRef] [PubMed]
  7. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef]
  8. N. Gat, "Imaging spectroscopy using tunable filters: a review," Proc. SPIE,  4056, 50-64 (2000).
    [CrossRef]
  9. P. J. Miller and C. C. Hoyt, "Multispectral imaging with a liquid crystal tunable filter," Proc. SPIE 2345, 354-365 (1995).
    [CrossRef]
  10. K. Hirabayshi and T. Kurokawa, "Liquid crystal devices for optical communication and information processing systems," Liq. Cryst. 14, 307-313 (1993).
    [CrossRef]
  11. R. H. Morris, C. C.  Hoyt, P. Miller, J. P. Treado, and J. Patrick, "Liquid crystal tunable filter Raman chemical imaging," Appl. Spectrosc. 50, 697-819 (1996).
    [CrossRef]
  12. M. Dandin, P. Abshire, and E. Smela, "Optical filtering technologies for integrated fluorescence sensors," Lab Chip, (Critical Review),  7, 955- 977 (2007).
    [CrossRef]
  13. J. S. Patel and S. D. Lee, "Electrically tunable and polarization insensitive FP etalon with a liquid crystal film," Appl. Phys. Lett. 58, 2491-2493 (1991).
    [CrossRef]
  14. K. C. Lin and W. C. Chuang, "Polarization-independent and electronically tunable FP etalons with cross orthogonal liquid crystal layers," Micro. Opt. Technolo. Lett. 38, 475-477 (2003).
    [CrossRef]
  15. S. A. Jewell1, E. Hendry, T. H. Isaac, and J. R. Sambles, "Tunable Fabry-Perot etalon for terahertz radiation," New J. Phys. 10, 1367-2630 (2008).
  16. S. T. Wu, "Design of a liquid crystal based tunable electro-optic filter," Appl. Opt. 28, 48-52 (1989).
    [CrossRef] [PubMed]
  17. R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
    [CrossRef]
  18. H. J. Masterson, G. D. Sharp, and K. M. Johnson, "Ferroelectric liquid-crystal tunable filter," Opt. Lett. 14, 1249-1251 (1989).
    [CrossRef] [PubMed]
  19. G. D. Sharp, K. M. Johnson, and D. Doroski, "Continuously tunable smectic A* liquid-crystal color filter," Opt. Lett. 15, 523-525 (1990).
    [CrossRef] [PubMed]
  20. A. Sneh and K. M. Johnson, "High speed continuously tunable liquid crystal filter for WDM networks," J. Lightwave Technol. 14, 1067-1080 (1996).
    [CrossRef]
  21. B. Lyot, "Optical apparatus with wide field using interference of polarized light," C.R. Acad. Sci. (Paris) 197, 1593 (1933).
  22. Y. Ohman, "A new monochromator," Nature 41, 157, 291 (1938).
    [CrossRef]
  23. Q. Wang, G. Farrell, and Y. Semenova, "Optimal design of birefringent filter with a flat-top passband," J. Opt. A, Pure Appl. Opt. 8, 652-656 (2006).
    [CrossRef]
  24. S. Gal, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, "Tunable birefringent filters-optimal iterative design," Opt. Express 10, 1534-1541 (2002).
  25. J. Y. Hardeberg, F. Schmitt, and H. Brettel, "Multispectral color image capture using a liquid crystal tunable filter," Opt. Eng. 41, 2532-2548 (2002).
    [CrossRef]
  26. O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
    [CrossRef]
  27. Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
    [CrossRef]
  28. I. Abdulhalim, "Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects," Liq. Cryst. 33, 1027-1041 (2006).
    [CrossRef]

2008 (2)

S. A. Jewell1, E. Hendry, T. H. Isaac, and J. R. Sambles, "Tunable Fabry-Perot etalon for terahertz radiation," New J. Phys. 10, 1367-2630 (2008).

O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
[CrossRef]

2007 (3)

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 - 938 (2007).
[CrossRef] [PubMed]

M. Dandin, P. Abshire, and E. Smela, "Optical filtering technologies for integrated fluorescence sensors," Lab Chip, (Critical Review),  7, 955- 977 (2007).
[CrossRef]

2006 (2)

Q. Wang, G. Farrell, and Y. Semenova, "Optimal design of birefringent filter with a flat-top passband," J. Opt. A, Pure Appl. Opt. 8, 652-656 (2006).
[CrossRef]

I. Abdulhalim, "Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects," Liq. Cryst. 33, 1027-1041 (2006).
[CrossRef]

2005 (1)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

2003 (1)

K. C. Lin and W. C. Chuang, "Polarization-independent and electronically tunable FP etalons with cross orthogonal liquid crystal layers," Micro. Opt. Technolo. Lett. 38, 475-477 (2003).
[CrossRef]

2002 (3)

2001 (1)

S. Saeed, P. J. Bos, and Z. Li, "A method of generating full color in a liquid crystal display using birefringent filters," Jpn. J. Appl. Phys. 40,3266-3271 (2001).
[CrossRef]

2000 (1)

N. Gat, "Imaging spectroscopy using tunable filters: a review," Proc. SPIE,  4056, 50-64 (2000).
[CrossRef]

1996 (3)

G. D. Sharp and K. M. Johnson, "A new RGB tunable filter technology," Proc. SPIE 12, 98-105 (1996).
[CrossRef]

A. Sneh and K. M. Johnson, "High speed continuously tunable liquid crystal filter for WDM networks," J. Lightwave Technol. 14, 1067-1080 (1996).
[CrossRef]

R. H. Morris, C. C.  Hoyt, P. Miller, J. P. Treado, and J. Patrick, "Liquid crystal tunable filter Raman chemical imaging," Appl. Spectrosc. 50, 697-819 (1996).
[CrossRef]

1995 (1)

P. J. Miller and C. C. Hoyt, "Multispectral imaging with a liquid crystal tunable filter," Proc. SPIE 2345, 354-365 (1995).
[CrossRef]

1994 (1)

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

1993 (1)

K. Hirabayshi and T. Kurokawa, "Liquid crystal devices for optical communication and information processing systems," Liq. Cryst. 14, 307-313 (1993).
[CrossRef]

1991 (1)

J. S. Patel and S. D. Lee, "Electrically tunable and polarization insensitive FP etalon with a liquid crystal film," Appl. Phys. Lett. 58, 2491-2493 (1991).
[CrossRef]

1990 (1)

1989 (2)

1938 (1)

Y. Ohman, "A new monochromator," Nature 41, 157, 291 (1938).
[CrossRef]

1933 (1)

B. Lyot, "Optical apparatus with wide field using interference of polarized light," C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Abdulhalim, I.

O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
[CrossRef]

I. Abdulhalim, "Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects," Liq. Cryst. 33, 1027-1041 (2006).
[CrossRef]

Abshire, P.

M. Dandin, P. Abshire, and E. Smela, "Optical filtering technologies for integrated fluorescence sensors," Lab Chip, (Critical Review),  7, 955- 977 (2007).
[CrossRef]

Aharon, O.

O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
[CrossRef]

Aoki, H.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Bos, P.

Bos, P. J.

S. Saeed, P. J. Bos, and Z. Li, "A method of generating full color in a liquid crystal display using birefringent filters," Jpn. J. Appl. Phys. 40,3266-3271 (2001).
[CrossRef]

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, "Multispectral color image capture using a liquid crystal tunable filter," Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Chuang, W. C.

K. C. Lin and W. C. Chuang, "Polarization-independent and electronically tunable FP etalons with cross orthogonal liquid crystal layers," Micro. Opt. Technolo. Lett. 38, 475-477 (2003).
[CrossRef]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 - 938 (2007).
[CrossRef] [PubMed]

Dandin, M.

M. Dandin, P. Abshire, and E. Smela, "Optical filtering technologies for integrated fluorescence sensors," Lab Chip, (Critical Review),  7, 955- 977 (2007).
[CrossRef]

Doroski, D.

Eidinger, E.

Farrell, G.

Q. Wang, G. Farrell, and Y. Semenova, "Optimal design of birefringent filter with a flat-top passband," J. Opt. A, Pure Appl. Opt. 8, 652-656 (2006).
[CrossRef]

Fujikado, T.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Gal, S.

Gat, N.

N. Gat, "Imaging spectroscopy using tunable filters: a review," Proc. SPIE,  4056, 50-64 (2000).
[CrossRef]

Hardeberg, J. Y.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, "Multispectral color image capture using a liquid crystal tunable filter," Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Hirabayshi, K.

K. Hirabayshi and T. Kurokawa, "Liquid crystal devices for optical communication and information processing systems," Liq. Cryst. 14, 307-313 (1993).
[CrossRef]

Hirohara, Y.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Hoyt, C. C.

R. H. Morris, C. C.  Hoyt, P. Miller, J. P. Treado, and J. Patrick, "Liquid crystal tunable filter Raman chemical imaging," Appl. Spectrosc. 50, 697-819 (1996).
[CrossRef]

P. J. Miller and C. C. Hoyt, "Multispectral imaging with a liquid crystal tunable filter," Proc. SPIE 2345, 354-365 (1995).
[CrossRef]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 - 938 (2007).
[CrossRef] [PubMed]

Jewell, S. A.

S. A. Jewell1, E. Hendry, T. H. Isaac, and J. R. Sambles, "Tunable Fabry-Perot etalon for terahertz radiation," New J. Phys. 10, 1367-2630 (2008).

Johnson, K. M.

G. D. Sharp and K. M. Johnson, "A new RGB tunable filter technology," Proc. SPIE 12, 98-105 (1996).
[CrossRef]

A. Sneh and K. M. Johnson, "High speed continuously tunable liquid crystal filter for WDM networks," J. Lightwave Technol. 14, 1067-1080 (1996).
[CrossRef]

G. D. Sharp, K. M. Johnson, and D. Doroski, "Continuously tunable smectic A* liquid-crystal color filter," Opt. Lett. 15, 523-525 (1990).
[CrossRef] [PubMed]

H. J. Masterson, G. D. Sharp, and K. M. Johnson, "Ferroelectric liquid-crystal tunable filter," Opt. Lett. 14, 1249-1251 (1989).
[CrossRef] [PubMed]

Kurokawa, T.

K. Hirabayshi and T. Kurokawa, "Liquid crystal devices for optical communication and information processing systems," Liq. Cryst. 14, 307-313 (1993).
[CrossRef]

Lee, S.D.

J. S. Patel and S. D. Lee, "Electrically tunable and polarization insensitive FP etalon with a liquid crystal film," Appl. Phys. Lett. 58, 2491-2493 (1991).
[CrossRef]

Li, Z.

S. Saeed, P. J. Bos, and Z. Li, "A method of generating full color in a liquid crystal display using birefringent filters," Jpn. J. Appl. Phys. 40,3266-3271 (2001).
[CrossRef]

Lin, K. C.

K. C. Lin and W. C. Chuang, "Polarization-independent and electronically tunable FP etalons with cross orthogonal liquid crystal layers," Micro. Opt. Technolo. Lett. 38, 475-477 (2003).
[CrossRef]

Lyot, B.

B. Lyot, "Optical apparatus with wide field using interference of polarized light," C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Maeda, N.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Marom, E.

Masterson, H. J.

Mendlovic, D.

Mihashi, T.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Miller, P.

Miller, P. J.

P. J. Miller and C. C. Hoyt, "Multispectral imaging with a liquid crystal tunable filter," Proc. SPIE 2345, 354-365 (1995).
[CrossRef]

Morris, R. H.

Moses, R.

O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
[CrossRef]

Nkazawa, N.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Ohman, Y.

Y. Ohman, "A new monochromator," Nature 41, 157, 291 (1938).
[CrossRef]

Okawa, Y.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Patel, J. S.

J. S. Patel and S. D. Lee, "Electrically tunable and polarization insensitive FP etalon with a liquid crystal film," Appl. Phys. Lett. 58, 2491-2493 (1991).
[CrossRef]

Patrick, J.

Rees, M. S.

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

Richards, J.

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

Saeed, S.

S. Saeed and P. Bos, "Multispectrum, spatially addressable polarization interference filter," J. Opt. Soc. Am. A 19, 2301-2312 (2002).
[CrossRef]

S. Saeed, P. J. Bos, and Z. Li, "A method of generating full color in a liquid crystal display using birefringent filters," Jpn. J. Appl. Phys. 40,3266-3271 (2001).
[CrossRef]

Safrani, A.

O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
[CrossRef]

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, "Multispectral color image capture using a liquid crystal tunable filter," Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Semenova, Y.

Q. Wang, G. Farrell, and Y. Semenova, "Optimal design of birefringent filter with a flat-top passband," J. Opt. A, Pure Appl. Opt. 8, 652-656 (2006).
[CrossRef]

Seymour, R. S.

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

Sharp, G. D.

Smela, E.

M. Dandin, P. Abshire, and E. Smela, "Optical filtering technologies for integrated fluorescence sensors," Lab Chip, (Critical Review),  7, 955- 977 (2007).
[CrossRef]

Sneh, A.

A. Sneh and K. M. Johnson, "High speed continuously tunable liquid crystal filter for WDM networks," J. Lightwave Technol. 14, 1067-1080 (1996).
[CrossRef]

Staromlynska, J.

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

Treado, J. P.

Tsuruga, Y.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Uchida, I.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Wang, Q.

Q. Wang, G. Farrell, and Y. Semenova, "Optimal design of birefringent filter with a flat-top passband," J. Opt. A, Pure Appl. Opt. 8, 652-656 (2006).
[CrossRef]

Wilson, P.

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 - 938 (2007).
[CrossRef] [PubMed]

Wu, S. T.

Yamaguchi, T.

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Zalevsky, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. S. Patel and S. D. Lee, "Electrically tunable and polarization insensitive FP etalon with a liquid crystal film," Appl. Phys. Lett. 58, 2491-2493 (1991).
[CrossRef]

Appl. Spectrosc. (1)

C.R. Acad. Sci. (Paris) (1)

B. Lyot, "Optical apparatus with wide field using interference of polarized light," C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Critical Review (1)

M. Dandin, P. Abshire, and E. Smela, "Optical filtering technologies for integrated fluorescence sensors," Lab Chip, (Critical Review),  7, 955- 977 (2007).
[CrossRef]

J. Lightwave Technol. (1)

A. Sneh and K. M. Johnson, "High speed continuously tunable liquid crystal filter for WDM networks," J. Lightwave Technol. 14, 1067-1080 (1996).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

Q. Wang, G. Farrell, and Y. Semenova, "Optimal design of birefringent filter with a flat-top passband," J. Opt. A, Pure Appl. Opt. 8, 652-656 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Saeed, P. J. Bos, and Z. Li, "A method of generating full color in a liquid crystal display using birefringent filters," Jpn. J. Appl. Phys. 40,3266-3271 (2001).
[CrossRef]

Liq. Cryst. (2)

K. Hirabayshi and T. Kurokawa, "Liquid crystal devices for optical communication and information processing systems," Liq. Cryst. 14, 307-313 (1993).
[CrossRef]

I. Abdulhalim, "Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects," Liq. Cryst. 33, 1027-1041 (2006).
[CrossRef]

Micro. Opt. Technolo. Lett. (1)

K. C. Lin and W. C. Chuang, "Polarization-independent and electronically tunable FP etalons with cross orthogonal liquid crystal layers," Micro. Opt. Technolo. Lett. 38, 475-477 (2003).
[CrossRef]

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications," Nat. Mater. 6, 929 - 938 (2007).
[CrossRef] [PubMed]

Nature (1)

Y. Ohman, "A new monochromator," Nature 41, 157, 291 (1938).
[CrossRef]

New J. Phys. (1)

S. A. Jewell1, E. Hendry, T. H. Isaac, and J. R. Sambles, "Tunable Fabry-Perot etalon for terahertz radiation," New J. Phys. 10, 1367-2630 (2008).

Opt. Eng. (2)

J. Y. Hardeberg, F. Schmitt, and H. Brettel, "Multispectral color image capture using a liquid crystal tunable filter," Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

R. S. Seymour, M. S. Rees, J. Staromlynska, J. Richards, and P. Wilson, "Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry," Opt. Eng. 33, 951-923 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

Y. Hirohara, Y. Okawa, T. Mihashi, T. Yamaguchi, N. Nkazawa, Y. Tsuruga, H. Aoki, N. Maeda, I. Uchida, and T. Fujikado, "Validity of Retinal Oxygen Saturation Analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter," Opt. Rev. 14, 151-158 (2007).
[CrossRef]

Phys. Med. Biol. (1)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Proc. SPIE (4)

N. Gat, "Imaging spectroscopy using tunable filters: a review," Proc. SPIE,  4056, 50-64 (2000).
[CrossRef]

P. J. Miller and C. C. Hoyt, "Multispectral imaging with a liquid crystal tunable filter," Proc. SPIE 2345, 354-365 (1995).
[CrossRef]

G. D. Sharp and K. M. Johnson, "A new RGB tunable filter technology," Proc. SPIE 12, 98-105 (1996).
[CrossRef]

O. Aharon, A. Safrani, R. Moses, and I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," Proc. SPIE 7050, 70500P (2008).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, Optical Wave in Crystals (John Wiley, New York, 1984).

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Liquid crystal Lyot filter composed of two stages, d is the first retarder thickness, (b) the additional eliminator retarder between crossed polarizers. (c) Transmission spectra for the 1st (dotted, d=8000nm) and 2nd (dashed) retarders within the Lyot filter as well as their multiplication which gives the Lyot filter output (bold). (d) The output of the additional retarder (order eliminator) between crossed polarizers with thickness de =2666 nm (dashed), the Lyot output (dotted) and their multiplication spectrum (bold) showing the elimination of the 3rd order peak of Lyot filter, resulting in FSR at this particular case of almost 500 nm.

Fig. 2.
Fig. 2.

(a) An additional two eliminator LCRs, the first with thickness of 2666 nm (dashed), the 2nd with thickness of 2000 nm (simple line), and their multiplication of the formers is in bold line. (b) The multiplication of the Lyot filter (dashed) with the two eliminator (simple line) showing the elimination of the third and the fourth orders of the Lyot filter (bold).

Fig. 3.
Fig. 3.

Four examples of measured spectra (dashed lines) and the theoretical fits (solid lines), for the 2nd order peak of the Lyot filter at 838 nm, 740 nm, 634 nm and 560 nm when the sets of voltages for the first and the second Lyot’s retarders as well as for the additional eliminator retarder were: {2.23V, 2V, 2.16V}, {2.492V, 2.28V, 2.455V}, {2.785V, 2.61V, 2.79V}, {3.0625V, 2.915V, 3.105V} correspondingly.

Fig. 4.
Fig. 4.

The measured rise time for a retarder with thickness of 8000 nm versus the voltage normalized to the threshold voltage which was found to be 1.4V. The wavelength used was 653nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T=j=1Ncos2(2j2Γ)=(sin2N1Γ2NsinΓ/2)2
λpeak=d(neno)m;FWHM=λpeak2Nm;FSR=λpeak(m+1)
δ=2πλ0d[ne(z,V)no]dz
T=(sin2N1Γ2NsinΓ/2)2.sin(δe2)2,
Tout=[cos(δ12)2.cos(δ22)2].sin(δ32)2
deΔnel=d1Δn1m
τ=τvVr21,

Metrics