Abstract

The first proof-of-concept demonstrations are presented for a broadband photonic-assisted analog-to-digital converter (ADC) based on spatial spectral holography (SSH). The SSH-ADC acts as a frequency-domain stretch processor converting high bandwidth input signals to low bandwidth output signals, allowing the system to take advantage of high performance, low bandwidth electronic ADCs. Demonstrations with 50 MHz effective bandwidth are shown to highlight basic performance with ~5 effective bits of vertical resolution. Signal capture with 1600 MHz effective bandwidth is also shown. Because some SSH materials span over 100 GHz and have large time apertures (~10 µs), this technique holds promise as a candidate for the next generation of ADCs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Walden, "Analog-to-digital converter survey," IEEE J. Sel. Areas Commun. 17, 539-550 (1999).
    [CrossRef]
  2. G. C. Valley, "Photonic analog-to-digital converters," Opt. Express 15, 1955-1982 (2007).
    [CrossRef] [PubMed]
  3. Y. Han, and B. Jalali, "Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations," J. Lightwave Technol. 21, 3085-3103 (2003).
    [CrossRef]
  4. W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, "Broadband analog to digital conversion with spatial-spectral holography," J. Lumin. 127, 152-157 (2007).
    [CrossRef]
  5. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
    [CrossRef]
  6. R. L. Cone, Dept. of Physics, Montana State University, EPS Room 264, Bozeman, MT, 59715, and Y. Sun are preparing a manuscript to be called "Optical Decoherence and Energy Level Structure of 0.1% Tm3+:LiNbO3."
  7. T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
    [CrossRef]
  8. M. J. E. Golay, "Complementary Series," IEEE Trans. Inf. Theory IT-7, 82-87 (1961).
    [CrossRef]
  9. R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
    [CrossRef]
  10. K. W. Holman, D. G. Kocher, and S. Kaushik, "MIT/LL development of broadband linear frequency chirp for high-resolution ladar," Proc. SPIE 27, 6572 (2007).
  11. R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

2007 (3)

W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, "Broadband analog to digital conversion with spatial-spectral holography," J. Lumin. 127, 152-157 (2007).
[CrossRef]

K. W. Holman, D. G. Kocher, and S. Kaushik, "MIT/LL development of broadband linear frequency chirp for high-resolution ladar," Proc. SPIE 27, 6572 (2007).

G. C. Valley, "Photonic analog-to-digital converters," Opt. Express 15, 1955-1982 (2007).
[CrossRef] [PubMed]

2004 (2)

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

2003 (1)

2002 (1)

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

1999 (1)

R. H. Walden, "Analog-to-digital converter survey," IEEE J. Sel. Areas Commun. 17, 539-550 (1999).
[CrossRef]

1995 (1)

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

1961 (1)

M. J. E. Golay, "Complementary Series," IEEE Trans. Inf. Theory IT-7, 82-87 (1961).
[CrossRef]

Babbitt, W. R.

W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, "Broadband analog to digital conversion with spatial-spectral holography," J. Lumin. 127, 152-157 (2007).
[CrossRef]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

Barber, Z.

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

Chang, T.

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

Cone, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

Equall, R. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

Fischer, J. A.

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

Golay, M. J. E.

M. J. E. Golay, "Complementary Series," IEEE Trans. Inf. Theory IT-7, 82-87 (1961).
[CrossRef]

Han, Y.

Harris, T. L.

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

Holman, K. W.

K. W. Holman, D. G. Kocher, and S. Kaushik, "MIT/LL development of broadband linear frequency chirp for high-resolution ladar," Proc. SPIE 27, 6572 (2007).

Hutcheson, R.

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

Hutcheson, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

Jalali, B.

Kaushik, S.

K. W. Holman, D. G. Kocher, and S. Kaushik, "MIT/LL development of broadband linear frequency chirp for high-resolution ladar," Proc. SPIE 27, 6572 (2007).

Kocher, D. G.

K. W. Holman, D. G. Kocher, and S. Kaushik, "MIT/LL development of broadband linear frequency chirp for high-resolution ladar," Proc. SPIE 27, 6572 (2007).

Macfarlane, R. M.

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

Merkel, K. D.

W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, "Broadband analog to digital conversion with spatial-spectral holography," J. Lumin. 127, 152-157 (2007).
[CrossRef]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

Mohan, R. K.

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

Neifeld, M. A.

W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, "Broadband analog to digital conversion with spatial-spectral holography," J. Lumin. 127, 152-157 (2007).
[CrossRef]

Reibel, R.

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

Sun, Y.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

Thiel, C. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

Tian, M.

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

Valley, G. C.

Walden, R. H.

R. H. Walden, "Analog-to-digital converter survey," IEEE J. Sel. Areas Commun. 17, 539-550 (1999).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

R. H. Walden, "Analog-to-digital converter survey," IEEE J. Sel. Areas Commun. 17, 539-550 (1999).
[CrossRef]

IEEE Trans. Inf. Theory (1)

M. J. E. Golay, "Complementary Series," IEEE Trans. Inf. Theory IT-7, 82-87 (1961).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (3)

R. Reibel, Z. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, "Broadband demonstrations of true-time delay using linear sideband chirped programming and OCT," J. Lumin. 107, 103-113 (2004).
[CrossRef]

W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, "Broadband analog to digital conversion with spatial-spectral holography," J. Lumin. 127, 152-157 (2007).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98281-287 (2002).
[CrossRef]

Laser Phys. (1)

R. L. Cone, R. W. Equall, Y. Sun, R. M. Macfarlane, and R. Hutcheson, "Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage," Laser Phys. 5, 573-575 (1995).

Opt. Express (1)

Phys. Rev. A (1)

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, W. R. Babbitt, and K. D. Merkel, "Frequency-chirped readout of spatial-spectral absorption features," Phys. Rev. A 70, 63803 (2004).
[CrossRef]

Proc. SPIE (1)

K. W. Holman, D. G. Kocher, and S. Kaushik, "MIT/LL development of broadband linear frequency chirp for high-resolution ladar," Proc. SPIE 27, 6572 (2007).

Other (1)

R. L. Cone, Dept. of Physics, Montana State University, EPS Room 264, Bozeman, MT, 59715, and Y. Sun are preparing a manuscript to be called "Optical Decoherence and Energy Level Structure of 0.1% Tm3+:LiNbO3."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The SSH-ADC conceptual diagram. Waveform Capture: the SOI and reference waveform are converted into the optical domain and illuminate the SSH material to produce a spectral hologram. Readout: a chirped optical waveform reads the absorption profile, which is detected and digitized with high fidelity, low speed ADCs, and post processed to yield the digitized version of the SOI.

Fig. 2.
Fig. 2.

The experimental setup for the SSH-ADC demonstrations. See text for discussion.

Fig. 3.
Fig. 3.

(Left) Post processing results showing the demodulated, time-domain representation of the SOI for lengths of 1,2,4,8,16,32, and 64 bits. The SOI was a 50 MSPS BPSK modulated signal on a 100 MHz and mixed onto a 6.5 GHz microwave carrier. The reference signal was a 512 bit complementary code at 400 MSPS. (Right) A zoom of the first 10 bits and shows good agreement with a simple simulation.

Fig. 4.
Fig. 4.

(a) The post-processed results as the AWG voltages are reduced showing a corresponding reduction in amplitude in the captured SOI. (b) A plot of the measured standard deviation (STD) of the waveform versus the amplitude from the AWG shown as the dots. The blue line is a plot of the expected amplitude response calculated for the EOPM. (c) The captured SOI results (black line) and simulated SOI results (blue dashed line) for a 1600 MSPS, 2048 bit binary coded SOI showing the total SOI duration. (d) A zoom of (c) showing that single bits can still be detected.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε (f) Vs(ffL)+VR(ffL)2 ,
= Vs(ffL)2 + VR(ffL)2 + Vs (ffL) VR* (ffL) ei2π(ffL)τ + c . c.
VR (f')ei2πf'τ(VR*(f')Vs(f')e2πf'τ),
Vout (t) (VR(t)VR(t))Vs(t),

Metrics