Abstract

We report the results of our preliminary investigation on the use of hollow-core photonic bandgap fiber (HC-PBF) for hydrophone application. The response of the commercial HC-1550-02 fiber to acoustic pressure, in terms of normalized responsivity (NR), is measured to be - 334.4dB re 1µPa-1. This agrees well with the theoretically predicated value of -331.6dB re 1µPa-1 and is about 15dB higher than that of the conventional fiber (HNSM-155). With straightforward fiber structure modifications (thinner outer silica cladding and higher air-filling ratio of inner microstructured cladding), the NR could be further enhanced to - 310dB re 1µPa-1

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Cole, R. L. Johnson and P. G. Bhuta, "Fiber Optic Detection of Sound," J. Acoust. Soc. Am. 62, 1136-1138 (1977).
    [CrossRef]
  2. J. A. Bucaro, H. D. Dardy and E. F. Carome, "Fiber Optic Hydrophone," J. Acoust. Soc. Am. 62, 1302-1304 (1977).
    [CrossRef]
  3. C. K. Kirkendall and A. Dandridge, "Overview of high performance fiber-optic sensing," J. Phys. D 37,197-216 (2004).
    [CrossRef]
  4. J. H. Cole et al, "Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors," 15th Optical Fiber Sensors Conference (2002).
  5. G. B. Hocker, "Fiber optic acoustic sensors with composite structure: an analysis," Appl. Opt. 18, 3679-3683 (1979).
    [CrossRef] [PubMed]
  6. N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
    [CrossRef]
  7. R. Hughes and J. Jarzynski, "Static pressure sensitivity amplification in interferometric fiber-optic hydrophones," Appl. Opt. 19, 98-107 (1980).
    [CrossRef] [PubMed]
  8. Crystal Fiber website, http://www.crystal-fibre.com
  9. B. Budiansky, D. C. Drucker, G. S. Kino, and J. R. Rice, "Pressure sensitivity of a clad optical fiber," Appl. Opt. 18, 4085-4088 (1979).
    [CrossRef] [PubMed]
  10. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, second edition, (Cambridge University Press, New York 1997).
  11. V. Dangui, H. K. Kim, MichelJ. F. Digonnet, and Gordon S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers," Opt. Express,  13, 6669-6684 (2005).
    [CrossRef] [PubMed]
  12. R. M. Christensen, "Mechanics of cellular and other low-density materials," Int. J. Solids and Struct. 37, 93-104 (2000).
    [CrossRef]
  13. S. P. Timoshenko and J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).
  14. J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, Clay Kirkendall, and Anthony Dandridge, "Air-Included Polymer Coatings for Enhanced Sensitivity of Fiber-Optic Acoustic Sensors," 16th Optical Fiber Sensors Conference, 214-217 (2003).
  15. N. Lagakos, J. H. Cole, and J. A. Bucaro, "Acoustic sensitivity of fiber-optic interferometric sensors," Opt. Fiber Commun., 1982.
  16. A. Dandridge, A. B. Tveten and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber optic sensors using phase generated carrier," IEEE J. Quantum Electron. 18, 1647-53 (1982) Conference, ThGG3, 72-74 (1982).
    [CrossRef]

2005

2004

C. K. Kirkendall and A. Dandridge, "Overview of high performance fiber-optic sensing," J. Phys. D 37,197-216 (2004).
[CrossRef]

2000

R. M. Christensen, "Mechanics of cellular and other low-density materials," Int. J. Solids and Struct. 37, 93-104 (2000).
[CrossRef]

1982

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

1980

1979

1977

J. H. Cole, R. L. Johnson and P. G. Bhuta, "Fiber Optic Detection of Sound," J. Acoust. Soc. Am. 62, 1136-1138 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy and E. F. Carome, "Fiber Optic Hydrophone," J. Acoust. Soc. Am. 62, 1302-1304 (1977).
[CrossRef]

Bhuta, P. G.

J. H. Cole, R. L. Johnson and P. G. Bhuta, "Fiber Optic Detection of Sound," J. Acoust. Soc. Am. 62, 1136-1138 (1977).
[CrossRef]

Bucaro, J. A.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

J. A. Bucaro, H. D. Dardy and E. F. Carome, "Fiber Optic Hydrophone," J. Acoust. Soc. Am. 62, 1302-1304 (1977).
[CrossRef]

Budiansky, B.

Carome, E. F.

J. A. Bucaro, H. D. Dardy and E. F. Carome, "Fiber Optic Hydrophone," J. Acoust. Soc. Am. 62, 1302-1304 (1977).
[CrossRef]

Christensen, R. M.

R. M. Christensen, "Mechanics of cellular and other low-density materials," Int. J. Solids and Struct. 37, 93-104 (2000).
[CrossRef]

Cole, J. H.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

J. H. Cole, R. L. Johnson and P. G. Bhuta, "Fiber Optic Detection of Sound," J. Acoust. Soc. Am. 62, 1136-1138 (1977).
[CrossRef]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, "Overview of high performance fiber-optic sensing," J. Phys. D 37,197-216 (2004).
[CrossRef]

Dangui, V.

Dardy, H. D.

J. A. Bucaro, H. D. Dardy and E. F. Carome, "Fiber Optic Hydrophone," J. Acoust. Soc. Am. 62, 1302-1304 (1977).
[CrossRef]

Drucker, D. C.

Hocker, G. B.

Hughes, R.

Jarzynski, J.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

R. Hughes and J. Jarzynski, "Static pressure sensitivity amplification in interferometric fiber-optic hydrophones," Appl. Opt. 19, 98-107 (1980).
[CrossRef] [PubMed]

Johnson, R. L.

J. H. Cole, R. L. Johnson and P. G. Bhuta, "Fiber Optic Detection of Sound," J. Acoust. Soc. Am. 62, 1136-1138 (1977).
[CrossRef]

Kim, H. K.

Kino, G. S.

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, "Overview of high performance fiber-optic sensing," J. Phys. D 37,197-216 (2004).
[CrossRef]

Lagakos, N.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

Michel, H. K.

Rice, J. R.

Schnaus, E. U.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, and J. A. Bucaro, "Optimizing fiber coatings for interferometric acoustic sensors," IEEE J. Quantum Electron. 18, 683-689 (1982).
[CrossRef]

Int. J. Solids and Struct.

R. M. Christensen, "Mechanics of cellular and other low-density materials," Int. J. Solids and Struct. 37, 93-104 (2000).
[CrossRef]

J. Acoust. Soc. Am.

J. H. Cole, R. L. Johnson and P. G. Bhuta, "Fiber Optic Detection of Sound," J. Acoust. Soc. Am. 62, 1136-1138 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy and E. F. Carome, "Fiber Optic Hydrophone," J. Acoust. Soc. Am. 62, 1302-1304 (1977).
[CrossRef]

J. Phys. D

C. K. Kirkendall and A. Dandridge, "Overview of high performance fiber-optic sensing," J. Phys. D 37,197-216 (2004).
[CrossRef]

Opt. Express

Other

Crystal Fiber website, http://www.crystal-fibre.com

J. H. Cole et al, "Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors," 15th Optical Fiber Sensors Conference (2002).

S. P. Timoshenko and J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

J. H. Cole, S. Mothley, J. Jarzynski, A. B. Tveten, Clay Kirkendall, and Anthony Dandridge, "Air-Included Polymer Coatings for Enhanced Sensitivity of Fiber-Optic Acoustic Sensors," 16th Optical Fiber Sensors Conference, 214-217 (2003).

N. Lagakos, J. H. Cole, and J. A. Bucaro, "Acoustic sensitivity of fiber-optic interferometric sensors," Opt. Fiber Commun., 1982.

A. Dandridge, A. B. Tveten and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber optic sensors using phase generated carrier," IEEE J. Quantum Electron. 18, 1647-53 (1982) Conference, ThGG3, 72-74 (1982).
[CrossRef]

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, second edition, (Cambridge University Press, New York 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM photograph of HC-PBF (HC-1550-02)

Fig. 2.
Fig. 2.

Cross-section of a HC-PBF with an air core, a honeycomb air-silica inner cladding, a solid silica outer cladding and a polymer jacket.

Fig. 3.
Fig. 3.

Radial deformations as functions of distance from fiber center for the conventional fiber and HC-PBF. The core region (i.e., r<a=5.45µm) is hollow and the radial displacement is zero.

Fig. 4.
Fig. 4.

NR of HC-PBF as functions of the thickness of the silica cladding (c-b) for different air filling ratios. Other parameters are fixed to a=5.45µm, b=35µm, and d=110µm. This graph is equivalent to c varying from 35 to 70µm.

Fig. 5.
Fig. 5.

Experimental setup

Fig. 6.
Fig. 6.

A typical experimental result (f=500Hz), the upper trace is the output from the fiber hydropone for a peak-peak phase change of 2π; the lower is the standard piezoelectrical hydrophone corresponds to the 2π phase change

Fig. 7.
Fig. 7.

Measured NR of conventional HNSM and HC-1550-02 fibers as functions of frequency

Tables (2)

Tables Icon

Table 1. Physical parameters and predicted NRs of the solid and hollow-core fibers

Tables Icon

Table 2 Parameters, measured NRs and predicted NRs of conventional fiber and HC-PBF

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2πλneffL
NR=1ϕdP=1LdLdP+1neffdneffdP
{Er=Eθ=32(1n)3E0=E1*Ez=(1η)E0=E1 {Vr0=Vθr=1Vzθ=Vzr=V0VrZ=Vθz0
{σri=Air2+2Ciσθi=Air2+2Ci,σzi=Di
{ εr1=2A1E1*r2v1D1E1εθ1=2A1E1*r2v1D1E1{εri=1Ei[(1+Vi)Air2+2(1vi)CiviDi]εθi=1Ei[-(1+vi)Air2+2(1vi)CiviDi](i=2,3)εzi=1Ei(Di4viCi)εz1=D1E1
σr1|r=b=σr2|r=b(a)σr2|r=c=σr3|r=c(b)ur1|r=b=ur2|r=b(c)ur2|r=c=ur3|r=c(d)σr1|r=a=0(e)σr3|r=d=(dP)(f)εz1=εz2=εz3(g)(dP)d2=σz1(b2a2)+σz2(c2b2)+σz3(d2c2)(h)
uri=εridr
N R=(dϕ)ϕ(dP)1LdLdP=εz1dP=D1E1dP
S=Sr+20log(2πVr)
N R=S20log(2πneffLλ)6

Metrics