Abstract

Sub-wavelength hole array (SHA) combined with thick metal layer (TML) is shown to have simultaneous suppressed transmission and reflection, resulting near-perfect absorption. Unlike the simultaneous electric and magnetic resonances in electric ring resonator and cut wire [PRL, 100, 207402 (2008)], such behavior results from strong anti-symmetric surface plasmons coupling supported by SHA and TML. The polarization-free characteristic permits to construct an ideal absorber for some practical applications in turbid backgrounds.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. J. B. Pendry, L. Martın-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  3. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  6. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A meta-material absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
    [CrossRef] [PubMed]
  7. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [CrossRef]
  8. W. J. Padilla, M. T. Aronsson, C. Highstrete, and A. J. Mark Lee, T. Averitt and R. D. Averitt, “Novel electrically resonant terahertz meta-materials,” http://arXiv.org/cond-mat/0605002 v1 .
  9. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [CrossRef]
  11. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the THz regime,” http://arXiv.org/abs/0807. 2479 v1.
  12. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [CrossRef] [PubMed]
  13. T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826 (2005).
    [CrossRef]
  14. F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
    [CrossRef]

2008 (5)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A meta-material absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[CrossRef] [PubMed]

J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
[CrossRef] [PubMed]

2005 (4)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826 (2005).
[CrossRef]

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

2004 (1)

J. B. Pendry, L. Martın-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Abbott, D.

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826 (2005).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A meta-material absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Barat, R

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

Bingham, C. M.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A meta-material absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Brueck, S. R.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Brueck, S. R. J.

Chen, J.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Federici, F. J

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martın-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Gary, D

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Huang, F

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A meta-material absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Malloy, K. J.

J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

J. B. Pendry, L. Martın-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mickan, S. P.

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826 (2005).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Oliveira, F.

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Padilla, J.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Padilla, W. J.

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martın-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Rainsford, T.

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826 (2005).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schulkin, B.

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Smolyakov, G. A.

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Tao, H.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A meta-material absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Zimdars, D

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Nature, (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical meta-material with a negative refractive index,” Nature, 10(1038), 07247 (2008).

Opt. Express (2)

Phys. Rev. B (3)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826 (2005).
[CrossRef]

Science (1)

J. B. Pendry, L. Martın-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

F. J Federici, B. Schulkin, F Huang, D Gary, R Barat, F. Oliveira, and D Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Other (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the THz regime,” http://arXiv.org/abs/0807. 2479 v1.

W. J. Padilla, M. T. Aronsson, C. Highstrete, and A. J. Mark Lee, T. Averitt and R. D. Averitt, “Novel electrically resonant terahertz meta-materials,” http://arXiv.org/cond-mat/0605002 v1 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) (a) Schematic drawing of isotropy PA consists of SHA and TML separated by a dielectric layer with permittivity of 2.1 (two periods in x and y direction are shown). The background material has permittivity of 1. The dot lines show the unit-cell of PA. The hole has same dimension of 100nm in x and y direction. The red line shows the position of the cross section for observing the distribution of magnetic field in simulation. (b) Simulated reflection (R), absorption (A) (left red axis) and transmission (T) (right blue axis) spectra of PA. The observation planes have distance of 1μm away from structure surface to obtain far field information and match experimental demand.

Fig. 2
Fig. 2

(Color online) The influence of (a) period of SHA, and (b) thickness of dielectric layer. The dimensions except the cared parameter are the same as that shown in Fig. 1(a). λ 0 in (a) represents the resonant wavelength of SHA. Red line in (b) shows respective absorption.

Fig. 3
Fig. 3

(Color online) (a) The influence of thickness of SHA. (b) Theoretical model of SHA combined with TML when thickness of SHA increases.

Fig. 4
Fig. 4

(Color online) Cross section view of current density (a) of SHA combined with TML at 642.7nm. (b) The physical model of the first order near-perfect absorption in this case. The black solid lines show the configuration of structure. The cross section is located at the red line shown in Fig. 1(a).

Fig. 5
Fig. 5

Dispersion diagram of SHA combined with TML. kp = ωp /c. ωp is the balk plasmons frequency of gold. c is the velocity of light in free space. kx is normalized using kp . The red and green dash line represents the dispersion relationship of first and second order near-perfect absorption, respectively. The insets show the distributions of magnetic density at first and second order coupling.

Metrics