Abstract

A pretilt angle controlling method by the density of rubbings using a tiny stylus is proposed. The control of the surface pretilt angle is achieved by rubbing a side-chain type polyimide film for a homeotropic alignment. Smooth liquid crystal (LC) director distribution in the bulk layer is successfully obtained even though the rough surface orientation. This approach is applied to LC cylindrical and rectangular lenses with a variable-focusing function. The distribution profile of the rubbing pitch (the reciprocal of the rubbing density) for small aberration is determined to be quadratic. The variable focusing function is successfully achieved in the LC rectangular lens, and the voltage dependence of the focal length is tried to be explained by the LC molecular reorientation behavior.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33(14), 2775–2784 (1994).
    [CrossRef] [PubMed]
  2. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33(14), 2804–2811 (1994).
    [CrossRef] [PubMed]
  3. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [CrossRef]
  4. Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979).
    [CrossRef]
  5. M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. 43(27), 5193–5197 (2004).
    [CrossRef] [PubMed]
  6. S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
    [CrossRef]
  7. T. Nose and S. Sato, “Liquid-crystal microlens with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
    [CrossRef]
  8. M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006).
    [CrossRef]
  9. S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
    [CrossRef]
  10. N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).
  11. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
    [CrossRef]
  12. B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41(7), 1246–1250 (2002).
    [CrossRef] [PubMed]
  13. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [CrossRef] [PubMed]
  14. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  15. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  16. M. Honma and T. Nose, “Friction as the fundamental factor controlling the pretilt angle of homeotropic liquid crystal cells: A microrubbing investigation,” J. Appl. Phys. 101(10), 104903 (2007).
    [CrossRef]

2008 (1)

2007 (1)

M. Honma and T. Nose, “Friction as the fundamental factor controlling the pretilt angle of homeotropic liquid crystal cells: A microrubbing investigation,” J. Appl. Phys. 101(10), 104903 (2007).
[CrossRef]

2006 (2)

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006).
[CrossRef]

2005 (2)

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

2004 (2)

M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. 43(27), 5193–5197 (2004).
[CrossRef] [PubMed]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

2002 (1)

1999 (1)

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
[CrossRef]

1994 (2)

1993 (1)

1989 (1)

T. Nose and S. Sato, “Liquid-crystal microlens with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

1979 (2)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979).
[CrossRef]

Asai, K.

Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979).
[CrossRef]

Burbridge,, D

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

Fukai, M.

Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979).
[CrossRef]

Gass, P.

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

Hara, T.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Hirata, K.

M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006).
[CrossRef]

Honma, M.

M. Honma and T. Nose, “Friction as the fundamental factor controlling the pretilt angle of homeotropic liquid crystal cells: A microrubbing investigation,” J. Appl. Phys. 101(10), 104903 (2007).
[CrossRef]

M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006).
[CrossRef]

M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. 43(27), 5193–5197 (2004).
[CrossRef] [PubMed]

Hori, Y.

Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979).
[CrossRef]

Iwasaki, M.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
[CrossRef]

Johnson, K. M.

Kawamura, M.

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

Kim, D.-W.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Kim, H.-R.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Kim, S.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Kobayashi, Y.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Lee, S.-D.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Lee,, S.-D.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

McKnight, D. J.

Morita, S.

Mukohzaka, N.

Murao, N.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
[CrossRef]

Nose, T.

M. Honma and T. Nose, “Friction as the fundamental factor controlling the pretilt angle of homeotropic liquid crystal cells: A microrubbing investigation,” J. Appl. Phys. 101(10), 104903 (2007).
[CrossRef]

M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006).
[CrossRef]

M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. 43(27), 5193–5197 (2004).
[CrossRef] [PubMed]

T. Nose and S. Sato, “Liquid-crystal microlens with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

Ogasawara, M.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
[CrossRef]

Ohtaki, S.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
[CrossRef]

Petschek, R. G.

Raptis, C

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

Ren, H.

Rosenblatt, C.

Sato, S.

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

T. Nose and S. Sato, “Liquid-crystal microlens with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Serati, R. A.

Smith, N.

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

Sugiura, N.

Takahashi, T.

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

Tillin, M.

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

Toyoda, H.

Wen, B.

Wu, S.-T.

Xianyu, H.

Xu, S.

Yamaguchi, R.

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

Yanase, S.

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

Yoshida, N.

Yu, C.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979).
[CrossRef]

J. Appl. Phys. (1)

M. Honma and T. Nose, “Friction as the fundamental factor controlling the pretilt angle of homeotropic liquid crystal cells: A microrubbing investigation,” J. Appl. Phys. 101(10), 104903 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Liq. Cryst. (1)

T. Nose and S. Sato, “Liquid-crystal microlens with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005).
[CrossRef]

Sharp Technical Journal (1)

N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a). Experimental setup for microrubbing. (b) Rubbing pattern of an LC cylindrical lens, where rectangles denote LC molecules. The tilt angle of an LC director on a polyimide film for homeotropic alignment varies depending on the magnitude of rubbing density.

Fig. 2
Fig. 2

Relationship between the pretilt angle and area ratio t/p, where t denotes rubbed line thickness and p is the scan pitch. The spacer diameter of examined LC cells was 20 μm.

Fig. 3
Fig. 3

Interference fringe patterns observed by a polarizing microscope (crossed polarizers) at (a) 0 V and (b) 1.34 V. The arrows denote the position of the fringes. The cell gap of the LC cylindrical lens is 47 μm.

Fig. 4
Fig. 4

Retardation distribution profiles for (a) α = 1, (b) α = 2, and (c) α = 4. The cell gaps derived from the retardation at the edge of the lens is (a) 51 μm, (b) 47 μm, and (c) 47 μm (Δn = 0.174).

Fig. 5
Fig. 5

Schematic diagram of the proposed LC lens with a two-dimensional focusing ability. The wide lines crossed orthogonally denote the rubbing trajectory. Four LC molecular orientations at the different positions are also depicted.

Fig. 6
Fig. 6

Polarizing microscope images of the proposed LC lens (a) at 0 V and (b) at 0.69 V. The cell gap is 40 μm, and the square lens area is 200 × 200 μm2. The rubbing parameters are the same as that of the cylindrical lens: α = 2, r = 100 μm, pe = 4 μm, and pc = 1 μm.

Fig. 7
Fig. 7

Focal length as a function of the applied voltage, where the focal length was measured as the distance from the LC layer. The spot profile at 0 V is also depicted.

Fig. 8
Fig. 8

(a) Experimental setup for examining imaging properties of an LC lens. (b) Object pattern and produced images at (c) 0 V, (b) 0.4 V (crossed polarizers), (c) 0.4 V (parallel polarizers), (d) 0.6 V, and (d) 1.0 V. Wavelength of incident light was 515 nm (FWHM = 10 nm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p(x)=pc+(pepc)|1xr|α,

Metrics