Abstract

We report a novel architecture that can be used to construct optical switch fabrics with very high port count and nanoseconds switching speed. It is well known that optical switch fabrics with very fast switching time and high port count are challenging to realize. Currently, one of the most promising solutions is based on a combination of wavelength-tunable lasers and the arrayed waveguide grating router (AWGR). To scale up the number of ports in such switches, a direct method is to use AWGRs with a high channel count. However, such AWGRs introduce very large crosstalk noise due to the close wavelength channel spacing. In this paper, we propose an architecture for realizing a high-port count optical switch fabric using a combination of low-port count AWGRs, optical ON-OFF gates and WDM couplers. Using this new methodology, we constructed a proof-of-concept experiment to demonstrate the feasibility of a 256×256 optical switch fabric. To our knowledge, this port count is the highest ever reported for switch fabrics of this type.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Neilson, "Photonics for switching and routing," IEEE J. Sel. Top. Quantum Electron. 12(4), 669-678 (2006).
    [CrossRef]
  2. J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
    [CrossRef]
  3. Y. K. Yeo, J. Yu, and G. K. Chang, "A broadcast and multicast-enabled switch architecture utilizing a gateless channel selection scheme," in Proceedings of Optical Fiber Commun. Conf. (OFC) 2006, OTuG7 (2006).
  4. G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
    [CrossRef]
  5. Jan Cheyns et al., "Clos lives on in optical packet switching," IEEE Commun. Mag.114-121 (2004).
    [CrossRef]
  6. C. H. Huang, H. F. Chou, J. E. Bowers, F. Toudeh-Fallah, and R. Gyurek, "Dynamically reconfigurable optical packet switch," Opt. Express 14(5), 12008-12014 (2006).
    [CrossRef] [PubMed]
  7. H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
    [CrossRef]
  8. M. Ishii et al., "Low-loss fibre-pigtailed 256 channel arrayed waveguide grating multiplexer using cascaded laterally-tapered waveguide," Electron. Lett. 37(23), 1401-1402 (2001).
    [CrossRef]
  9. P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).
  10. N. Sahri, D. Prieto, S. Silvestre, D. Keller,  et al., "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," in Proceedings of Optical Fiber Commun. Conf. (OFC) 2001, PD32-1-3 (2001).
  11. A. Ehrhardt et al., "Semiconductor laser amplifier as optical switching gate," IEEE J. Lightwave Technol. 11, 1287-1295 (1993).
    [CrossRef]
  12. http://www.eospace.com/Switches.htm.
  13. D. Bimberg, "Quantum dot based nanophotonics and nanoelectronics," Electron. Lett. 44(3), 168-171 (2008).
    [CrossRef]
  14. 14. S. Dommers et al., ‘Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier," Appl. Phys. Lett. 90, 033508 (2007).
    [CrossRef]

2007

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

14. S. Dommers et al., ‘Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier," Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

2006

C. H. Huang, H. F. Chou, J. E. Bowers, F. Toudeh-Fallah, and R. Gyurek, "Dynamically reconfigurable optical packet switch," Opt. Express 14(5), 12008-12014 (2006).
[CrossRef] [PubMed]

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

D. T. Neilson, "Photonics for switching and routing," IEEE J. Sel. Top. Quantum Electron. 12(4), 669-678 (2006).
[CrossRef]

2004

Jan Cheyns et al., "Clos lives on in optical packet switching," IEEE Commun. Mag.114-121 (2004).
[CrossRef]

2001

M. Ishii et al., "Low-loss fibre-pigtailed 256 channel arrayed waveguide grating multiplexer using cascaded laterally-tapered waveguide," Electron. Lett. 37(23), 1401-1402 (2001).
[CrossRef]

2000

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

1995

H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
[CrossRef]

1993

A. Ehrhardt et al., "Semiconductor laser amplifier as optical switching gate," IEEE J. Lightwave Technol. 11, 1287-1295 (1993).
[CrossRef]

Bimberg, D.

D. Bimberg, "Quantum dot based nanophotonics and nanoelectronics," Electron. Lett. 44(3), 168-171 (2008).
[CrossRef]

Bowers, J. E.

Cappuzzo, M.

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

Chang, G. K.

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

Chou, H. F.

Chowdhury, A.

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

Doerr, C. R.

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

Doerr, C.R.

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

Dommers, S.

14. S. Dommers et al., ‘Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier," Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

Dragone, C.

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

Ehrhardt, A.

A. Ehrhardt et al., "Semiconductor laser amplifier as optical switching gate," IEEE J. Lightwave Technol. 11, 1287-1295 (1993).
[CrossRef]

Gripp, J.

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

Gyurek, R.

Huang, C. H.

Inoue, Y.

H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
[CrossRef]

Ishii, M.

M. Ishii et al., "Low-loss fibre-pigtailed 256 channel arrayed waveguide grating multiplexer using cascaded laterally-tapered waveguide," Electron. Lett. 37(23), 1401-1402 (2001).
[CrossRef]

Jia, Z.

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

Laskowski, E.

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

Monnard, P.

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

Neilson, D. T.

D. T. Neilson, "Photonics for switching and routing," IEEE J. Sel. Top. Quantum Electron. 12(4), 669-678 (2006).
[CrossRef]

Oda, K.

H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
[CrossRef]

Paunescu, A.

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

Raybon, G.

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

Simsarian, J.E.

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

Takahasi, H.

H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
[CrossRef]

Toba, H.

H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
[CrossRef]

Toudeh-Fallah, F.

Winzer, P. J.

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

Yeo, Y. K.

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

Yu, J.

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

Appl. Phys. Lett.

14. S. Dommers et al., ‘Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier," Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

Electron. Lett.

M. Ishii et al., "Low-loss fibre-pigtailed 256 channel arrayed waveguide grating multiplexer using cascaded laterally-tapered waveguide," Electron. Lett. 37(23), 1401-1402 (2001).
[CrossRef]

IEEE Commun. Mag.

Jan Cheyns et al., "Clos lives on in optical packet switching," IEEE Commun. Mag.114-121 (2004).
[CrossRef]

IEEE J. Lightwave Technol.

H. Takahasi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE J. Lightwave Technol. 13(3), 447-455 (1995).
[CrossRef]

P. Monnard, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, "Large N x N waveguide grating routers," IEEE J. Lightwave Technol. 18(7), 985-991 (2000).

A. Ehrhardt et al., "Semiconductor laser amplifier as optical switching gate," IEEE J. Lightwave Technol. 11, 1287-1295 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. T. Neilson, "Photonics for switching and routing," IEEE J. Sel. Top. Quantum Electron. 12(4), 669-678 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Gripp, P. J. Winzer, G. Raybon, J.E. Simsarian, and C.R. Doerr, "107-Gb/s serial optical packet switching with 1-bit/s/Hz spectral efficiency for 100-GbE backplanes," IEEE Photon. Technol. Lett. 19,15, 1124-1126 (2007).
[CrossRef]

Opt. Express

Proc. of the IEEE

G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, and Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. of the IEEE 94(5), 892-910 (2006).
[CrossRef]

Other

Y. K. Yeo, J. Yu, and G. K. Chang, "A broadcast and multicast-enabled switch architecture utilizing a gateless channel selection scheme," in Proceedings of Optical Fiber Commun. Conf. (OFC) 2006, OTuG7 (2006).

http://www.eospace.com/Switches.htm.

D. Bimberg, "Quantum dot based nanophotonics and nanoelectronics," Electron. Lett. 44(3), 168-171 (2008).
[CrossRef]

N. Sahri, D. Prieto, S. Silvestre, D. Keller,  et al., "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," in Proceedings of Optical Fiber Commun. Conf. (OFC) 2001, PD32-1-3 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A generic architecture illustrating how an 2MN×2MN optical switch fabric can be constructed using M number of N×N AWGRs.

Fig. 2.
Fig. 2.

A WDM coupler distributes the wavelength channels from the AWGR to the odd and even output ports of the switch fabric.

Fig. 3.
Fig. 3.

An example of a 16×16 optical switch fabric constructed using the proposed architecture.

Fig. 4.
Fig. 4.

Experimental setup for the proposed 256×256 switch.

Fig. 5.
Fig. 5.

(a). Optical spectra. (b) BER performance; ◊: input signal (back-to-back measurement without switch fabric), ▫: output signal from AWGR0, +: output signal from AWGR3, ×: signal from AWGR0 with inter-channel crosstalk.

Fig. 6.
Fig. 6.

Spectra of the switched signal measured at 256 output ports. The input port is fixed and the wavelength of the input signal is varied. All output channels have similar characteristics, but due to space constraints only selected channels are shown.

Fig. 7.
Fig. 7.

Wavelength channel redistribution in the proposed switch fabric.

Tables (1)

Tables Icon

Table 1. Relationship between fabric insertion loss and the power margin (N=32)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x=0,1,2,,2MN1
y=0,1,2,,2MN1
i , j [0,2N1]
m [0,M1]
n [0,N1]
Sm,n=Σp=2Mn2M(n+1)1λip

Metrics