Abstract

Quantum state tomography (QST) is an important method for evaluating the quality of entangled photon pairs, and has been widely used to measure polarization entanglement. However, QST has not been applied to time-bin entanglement, which is a type of entanglement suitable for fiber transmission. In this paper, we clarify the way to implement QST on time-bin entangled photon pairs using a 1-bit delayed interferometer. We also provide experimental results for a demonstration of QST for time-bin entangled photon pairs generated using spontaneous four-wave mixing in a dispersion shifted fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
    [CrossRef]
  2. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993).
    [CrossRef] [PubMed]
  3. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  4. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
    [CrossRef]
  5. K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
    [CrossRef] [PubMed]
  6. N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
    [CrossRef] [PubMed]
  7. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
    [CrossRef] [PubMed]
  8. S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
    [CrossRef]
  9. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
    [CrossRef]
  10. I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  11. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006).
    [CrossRef] [PubMed]
  12. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
    [CrossRef] [PubMed]
  13. J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.
  14. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, "Long-distance entanglementbased quantum key distribution over optical fiber," Opt. Express 16, 19118-19126 (2008).
    [CrossRef]
  15. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55-&μυ;m band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293-295 (2005).
    [CrossRef] [PubMed]
  16. G. Berlin, G. Brassard, F. Bussieres, N. Godbout, J. A. Slater, W. Tittel, "Flipping quantum coins," arXiv:0904.3946.
  17. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
    [CrossRef]
  18. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  19. H. Takesue and K. Inoue,"Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  20. N. Namekata, S. Sasamori, and S. Inoue, "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Express 14, 10043-10049 (2006).
    [CrossRef] [PubMed]
  21. B. Miquel and H. Takesue, "Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photoidodes," New J. Phys. 11, 045006 (2009).
    [CrossRef]
  22. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
    [CrossRef] [PubMed]
  23. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
    [CrossRef]

2009 (1)

B. Miquel and H. Takesue, "Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photoidodes," New J. Phys. 11, 045006 (2009).
[CrossRef]

2008 (1)

2007 (2)

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
[CrossRef] [PubMed]

S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

2006 (3)

2005 (2)

2004 (3)

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
[CrossRef] [PubMed]

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

2002 (2)

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

2001 (2)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

1993 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993).
[CrossRef] [PubMed]

1982 (1)

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Altepeter, J. B.

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

Asobe, M.

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

Baek, B.

Branning, D.

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993).
[CrossRef] [PubMed]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Diamanti, E.

Dynes, J.

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Edamatsu, K.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
[CrossRef] [PubMed]

Fejer, M. M.

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Fujiwara, M.

Gisin, N.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Hadfield, R

Harada, K.

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Honjo, T.

Inoue, K.

Inoue, S.

Itoh, T.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
[CrossRef] [PubMed]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Jeffrey, E. R.

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

Kamada, H.

Kumar, P.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Kwiat, P. G.

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993).
[CrossRef] [PubMed]

Langrock, C.

Legre, M.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Marcikic, I.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Matsumoto, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

Miki, S.

Miquel, B.

B. Miquel and H. Takesue, "Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photoidodes," New J. Phys. 11, 045006 (2009).
[CrossRef]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Nakamura, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

Nam, S. W.

Nambu, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

Namekata, N.

Nishida, Y.

Odate, S.

S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Oohata, G.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
[CrossRef] [PubMed]

Peters, N. A.

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Roussev, R. V.

Sasaki, M.

Sasamori, S.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sharpe, A. W.

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Shimizu, R.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
[CrossRef] [PubMed]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993).
[CrossRef] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

Tadanaga, O.

Takesue, H.

B. Miquel and H. Takesue, "Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photoidodes," New J. Phys. 11, 045006 (2009).
[CrossRef]

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, "Long-distance entanglementbased quantum key distribution over optical fiber," Opt. Express 16, 19118-19126 (2008).
[CrossRef]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
[CrossRef] [PubMed]

H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
[CrossRef] [PubMed]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55-&μυ;m band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293-295 (2005).
[CrossRef] [PubMed]

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Tittel, W.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

Tsuchida, H.

S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

Tsuda, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

Usami, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Wang, Z.

Wei, T.-C.

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Yamamoto, Y.

Yoshizawa, A.

S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

Yuan, Z. L.

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Zbinden, H.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

Zhang, Q.

Appl. Phys. Lett. (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Electron. Lett. (1)

S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Nature (2)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006)
[CrossRef] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004).
[CrossRef] [PubMed]

New J. Phys. (1)

B. Miquel and H. Takesue, "Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photoidodes," New J. Phys. 11, 045006 (2009).
[CrossRef]

Opt. Express (4)

Opt. Express. (1)

J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.

Opt. Lett. (2)

Phys. Rev. A (3)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993).
[CrossRef] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002)
[CrossRef]

Phys. Rev. Lett. (5)

N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004).
[CrossRef] [PubMed]

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Other (2)

H. Takesue and K. Inoue,"Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

G. Berlin, G. Brassard, F. Bussieres, N. Godbout, J. A. Slater, W. Tittel, "Flipping quantum coins," arXiv:0904.3946.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Poincaré spheres for (a) polarization and (b) time-bin qubits.

Fig. 2.
Fig. 2.

Projection measurement using 1-bit delayed interferometer.

Fig. 3.
Fig. 3.

Experimental setup.

Fig. 4.
Fig. 4.

Typical histogram of photon arrival time for D1.

Fig. 5.
Fig. 5.

Density matrix of time-bin entangled photon pairs obtained by QST. (a) and (b) show the real and the imaginary parts of the matrix obtained by linear tomography, while (c) and (d) are those obtained by maximum likelihood estimation.

Tables (3)

Tables Icon

Table 1. Tomographic analysis states used in the experimentDThe fourth column refers to the two-photon states to which photons 1 and 2 are projected.

Tables Icon

Table 2. Experimentally obtained coincidence counts. A dash (-) indicates that coincidences were not obtained for the corresponding projection measurement. The 4th, 5th, 6th and 7th columns correspond to the obtained coincidence counts for four different energy-basis projection measurement settings, and the 8th column gives the total coincidence counts denoted as nν .

Tables Icon

Table 3. Quantities derived from the density matrix

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ϕ=α1+β2,
1+eiθ22 .
ρ̂=Σμ=116Γ̂μrμ
rμ=T r {Γ̂μρ̂}
nv=Cψvρ̂ψv,
n1n2n16=C B1,1B1,2B1,16B2,1B2,16B16,1B16,16 r1r2r16 ,
Bx,y=ψxΓyψx .
r1r2r16=CB1n1n2n16
ρ̂=C1Σv=116M̂vnv,
M̂v = Σx Γx (B1)x,ν .
C=Σν=14nν
ρ̂=(Σν=116M̂νnν)(Σν=14nν).
Ψ=12 (1s1i+2s2i)
ρ=0.4456260.011447+i0.0130830.012674+i0.0102210.421504i0.1079310.011447i0.0130830.0400650.059689i0.0126740.05070+i0.0482420.012674i0.0102210.059689+i0.0126740.0261650.022486+i0.0044970.421504+i0.1079310.05070i0.0482420.022486i0.0044970.488144
ρp=0.4612660.006138+i0.0148050.002069+i0.0213710.395186i0.0904090.006138i0.0148050.0393980.019510+i0.0132860.034332+i0.0288990.002069i0.0213710.019510i0.0132860.0274240.000301+i0.0014150.395186+i0.0904090.034332i0.0288990.000301i0.0014150.471911
Ψ=12(1s1i+e2s2i)
Ψ1s1i +eiϕi1s2i + eiϕs2s 1i +(ei(ϕs+ϕi)+e) 2s 2i
+ei(ϕ+ϕi)2s3i +ei(ϕ+ϕs)3s2i+ei(ϕ+ϕs+ϕi)3s3i,
δSμδSνˉ=Sνδμ,νC.
δSμδSμˉ=δν,μΣx=s,iε, Σλ=116 fν,ε(x) fν,λ(x) Sε Sλ (Δθ)2
fν,μ(x)=θν,xψνM̂μ ψν+ψνM̂μ{θν,xψν},
δSνδSμˉ=δν,μ Λν
Λν= [svC+Σx=s,iΣε,λ=116fν,ε(x)fν,λ(x)SεSλ(Δθ)2].
F=ψρψ .
(ΔF)2=Σν=116(Fsν)2Λν.
Fsv=12 {11Mv11+11Mv22+22Mv11+22Mv22}

Metrics