Abstract

The interaction of a nanoparticle with light is affected by nanoparticle geometry and composition, as well as by focused beam parameters, such as the polarization and numerical aperture of the beam. The interaction of a radially focused beam with a prolate spheroidal nanoparticle is particularly important because it has the potential to produce strong near-field electromagnetic radiation. Strong and tightly localized longitudinal components of a radially polarized focused beam can excite strong plasmon modes on elongated nanoparticles such as prolate spheroids. In this study, near field radiation from a prolate spheriodal nanoparticle is investigated when it is illuminated with a radially polarized focused beam of light. Near-field radiation from the nanoparticle is investigated in the absence and presence of metallic layers. It is shown that the interaction of a radially polarized focused beam with a prolate spheroidal nanoparticle can be enhanced by creating images of monopole charges using metallic layers. In addition, it is also observed that the presence of a metallic layer shifts the resonance of the prolate spheroid toward longer wavelengths. Dipole, quadruple, and off resonance field distributions for particles with different sizes and aspect ratios are presented when they are illuminated with a radially focused beam of light.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  2. O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
    [CrossRef]
  3. W. A. Challener, I. K. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in a dense media with lossy materials," Opt. Express 11, 3160-3170 (2003).
    [CrossRef] [PubMed]
  4. K. Sendur, W. Challener, and O. Mryasov, "Interaction of spherical nanoparticles with a highly focused beam of light," Opt. Express 16, 2874-2886 (2008).
    [CrossRef] [PubMed]
  5. J. Lerme, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, "Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique," J. Opt. Soc. Am. A 25, 493-514 (2008).
    [CrossRef]
  6. N. M. Mojarad, V. Sandoghdar, and M. Agio, "Plasmon spectra of nanospheres under a tightly focused beam," J. Opt. Soc. Am. B 25, 651-658 (2008).
    [CrossRef]
  7. D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, A. J. Meixner, "Tight focusing of laser beams in a l /2-microcavity," Opt. Express 16, 9907-9917 (2008).
    [CrossRef] [PubMed]
  8. A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
    [CrossRef] [PubMed]
  9. N. M. Mojarad and M. Agio, "Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams," Opt. Express 17, 117-122 (2009).
    [CrossRef] [PubMed]
  10. N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002).
    [CrossRef]
  11. B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
    [CrossRef]
  12. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  13. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. Roy. Soc. London Ser. A 253, 349-357 (1959).
    [CrossRef]
  14. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]
  15. L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, New York, NY, 2006) Chap. 3.
  16. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997).
    [CrossRef] [PubMed]
  17. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  18. M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and D. H. McIntyre, "Doughnut mode magneto-optical trap," J. Opt. Soc. Am. B 14, 544-552 (1997).
    [CrossRef]
  19. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  20. H. Kano, D. Nomura, and H. Shibuya, "Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam," Appl. Opt. 43, 2409-2411 (2004).
    [CrossRef] [PubMed]
  21. H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B 15, 1381-1386 (1998).
    [CrossRef]
  22. J. M. Jin, The finite element method in electromagnetics (John Wiley & Sons, New York, NY, 2000).
  23. All the FEM calculations in this report are performed with High Frequency Structure Simulator from Ansoft Inc with the inhouse developed focused beam models integrated into it.
  24. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).
  25. A. Hartschuh, E. J. S’anchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
    [CrossRef] [PubMed]
  26. K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
    [CrossRef]
  27. L. Wang and X. Xu, "Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures," J. Microsc. 229, 483-489 (2008).
    [CrossRef] [PubMed]
  28. B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  29. J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).
  30. P. Nordlander and E. Prodan,"Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209 (2004).
    [CrossRef]
  31. F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
    [CrossRef] [PubMed]

2009 (1)

2008 (5)

2006 (1)

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

2005 (1)

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Nordlander and E. Prodan,"Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209 (2004).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

H. Kano, D. Nomura, and H. Shibuya, "Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam," Appl. Opt. 43, 2409-2411 (2004).
[CrossRef] [PubMed]

2003 (4)

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

W. A. Challener, I. K. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in a dense media with lossy materials," Opt. Express 11, 3160-3170 (2003).
[CrossRef] [PubMed]

A. Hartschuh, E. J. S’anchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

2002 (3)

O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
[CrossRef]

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002).
[CrossRef]

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

2000 (1)

1998 (1)

1997 (2)

1990 (1)

1983 (1)

B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

1959 (2)

E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. Roy. Soc. London Ser. A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Agio, M.

Bell, A. S.

Brown, T. G.

Calander, N.

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002).
[CrossRef]

Challener, W.

K. Sendur, W. Challener, and O. Mryasov, "Interaction of spherical nanoparticles with a highly focused beam of light," Opt. Express 16, 2874-2886 (2008).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

Challener, W. A.

Chizhik, A.

Clarke, R. B. M.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Enderlein, J.

Failla, A. V.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Ford, D. H.

Goldberg, B. B.

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

Gutbrod, R.

Halas, N. J.

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

Hartschuh, A.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

A. Hartschuh, E. J. S’anchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Hayashi, S.

Hoffmann, P.

O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
[CrossRef]

Ichimura, I.

Ippolito, S. B.

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

Kano, H.

Kawata, S.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Khoptyar, D.

Kimura, W. D.

Kino, G. S.

Kll, M.

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

Le, F.

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Liu, Z.

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

Lundstroem, I.

B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lwin, N. Z.

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

Marquis-Weible, F.

O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
[CrossRef]

McIntyre, D. H.

Meixner, A. J.

D. Khoptyar, R. Gutbrod, A. Chizhik, J. Enderlein, F. Schleifenbaum, M. Steiner, A. J. Meixner, "Tight focusing of laser beams in a l /2-microcavity," Opt. Express 16, 9907-9917 (2008).
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Mizuguchi, S.

Mojarad, N. M.

Mryasov, O.

Nomura, D.

Nordlander, P.

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan,"Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209 (2004).
[CrossRef]

Novotny, L.

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Peng, C.

Prodan, E.

P. Nordlander and E. Prodan,"Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209 (2004).
[CrossRef]

Qian, H.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Qian, H. H.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Riis, E.

Sandoghdar, V.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Schleifenbaum, F.

Sendur, I. K.

Sendur, K.

K. Sendur, W. Challener, and O. Mryasov, "Interaction of spherical nanoparticles with a highly focused beam of light," Opt. Express 16, 2874-2886 (2008).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

Shibuya, H.

Snadden, M. J.

Sqalli, O.

O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
[CrossRef]

Steele, J. M.

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

Steiner, M.

Tidwell, S. C.

Unlu, M. S.

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

Utke, I.

O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
[CrossRef]

Wang, L.

L. Wang and X. Xu, "Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures," J. Microsc. 229, 483-489 (2008).
[CrossRef] [PubMed]

Willander, M.

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. Roy. Soc. London Ser. A 253, 349-357 (1959).
[CrossRef]

Xu, X.

L. Wang and X. Xu, "Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures," J. Microsc. 229, 483-489 (2008).
[CrossRef] [PubMed]

Youngworth, K. S.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Unlu, "Immersion lens microscopy of photonic nanostructures and quantum dots," IEEE J. Sel. Top. Quantum Electron. 8, 1051-1059 (2002).
[CrossRef]

J. Appl. Phys. (3)

O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. Appl. Phys. 92, 1078-1083 (2002).
[CrossRef]

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

J. Microsc. (1)

L. Wang and X. Xu, "Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures," J. Microsc. 229, 483-489 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Nano Lett. (3)

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan,"Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209 (2004).
[CrossRef]

F. Le, N. Z. Lwin, J. M. Steele, M. Kll, N. J. Halas, and P. Nordlander,"Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Lett. 5, 2009 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. Lett. (2)

A. Hartschuh, E. J. S’anchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. Roy. Soc. London Ser. A (2)

E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. Roy. Soc. London Ser. A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lundstroem, "Surface plasmon resonances for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Other (5)

J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).

L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, New York, NY, 2006) Chap. 3.

J. M. Jin, The finite element method in electromagnetics (John Wiley & Sons, New York, NY, 2000).

All the FEM calculations in this report are performed with High Frequency Structure Simulator from Ansoft Inc with the inhouse developed focused beam models integrated into it.

E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

The field components for a radially polarized focused beam with various α: (a) Ex for α=30°, (b) Ey for α=30°, (c) Ez for α=30°, (d) Ex for α=45°, (e) Ey for α=45°, (f) Ez for α=45°, (g) Ex for α=60°, (h) Ey for α=60°, (i) Ez for α=60°, (j) Ex for α=75°, (k) Ey for α=75°, (l) Ez for α=75°.

Fig. 2.
Fig. 2.

(a) A schematic illustration of a prolate spheriodal nanoparticle and the incident radially polarized focused beam. The red arrow illustrates the propagation direction of the beam. (b) |E(r)|2 distribution on the x̂-ẑ cut plane for a gold prolate spheroid particle of a=100 nm and ξ0.2 illuminated with a radially polarized focused light at λ=700 nm.

Fig. 3.
Fig. 3.

(a) The wavelength response of a gold prolate spheroidal nanoparticle with a=100 nm and ξ=0.2 is plotted. The intensity |E|2 is calculated at a distance 10 nm away at various wavelengths. (b) |E(r)|2 distribution on the x̂-ẑ cut plane is plotted at λ=800 nm for a gold prolate spheroid with a=100 nm and ξ=0.2. (c) The wavelength response of a gold spherical nanoparticle with a radius of 100 nm is plotted. The intensity |E|2 is calculated at a distance 10 nm away at various wavelengths. (d) |E(r)|2 distribution on the x̂-ẑ cut plane is plotted at λ=650 nm for a gold spherical nanoparticle with a radius of 100 nm.

Fig. 4.
Fig. 4.

The intensity |E|2 at a distance 10 nm away from the tip of a gold nanoparticle for various prolate sizes: (a) a=25 nm, (b) a=50 nm, (c) a=75 nm, (d) a=100 nm, (e) a=150 nm, (f) a=200 nm.

Fig. 5.
Fig. 5.

|E(r)|2 distributions for prolate spheroids with ξ=0.2. The distributions are given for various prolate sizes and at various wavelengths [a (nm), λ(nm)]: (a) [50, 750], (b) [50, 1600], (c) [75, 750], and (d) [75, 1600]. Note that the left column corresponds to dipolar resonance points, whereas the right column corresponds to off resonance points.

Fig. 6.
Fig. 6.

|E(r)|2 distributions for various prolate spheroids with ξ=0.2. The distributions are given for various prolate sizes and at various wavelengths [a (nm), ξ, λ (nm)]: (a) [150, 0.2, 650], (b) [150, 0.2, 900], (c) [150, 0.2, 1600], (d) [200, 0.2, 700], (e) [200, 0.2, 1100], (f) [200, 0.2, 1600], (g) [150, 0.5, 550], (h) [150, 0.5, 900], (i) [150, 0.5, 1600], (j) [200, 0.5, 650], (k) [200, 0.5, 1200], and (l) [200, 0.5, 1600]. Note that the left column corresponds to quadruple resonance points, the middle column corresponds to dipolar resonance points, and the right column corresponds to off resonance points.

Fig. 7.
Fig. 7.

The intensity |E|2 at a distance 10 nm away from the tip of a silver nanoparticle for various prolate sizes: (a) a=25 nm, (b) a=50 nm, (c) a=75 nm, (d) a=100 nm, (e) a=150 nm, (f) a=200 nm.

Fig. 8.
Fig. 8.

A comparison of the spectral distribution from a gold prolate spheroidal nanoparticle illuminated with a radially polarized focused beam (RPFB), linearly polarized plane wave (LPPW), and linearly polarized focused beam (LPFB) for two different (a, ξ) pairs (a) (200, 0.3) and (b) (200, 0.4).

Fig. 9.
Fig. 9.

jE(r)j2 distributions for a gold prolate spheroid with [a (nm), ξ, λ (nm)]=[150, 0.2, 650]. The distributions are given for various half-beam angle: (a) α=15°, (b) α=30°, (c) α=45°, and (d) α=60°.

Fig. 10.
Fig. 10.

|E(r)|2 distributions for a gold prolate spheroid with [a (nm), ξ, λ (nm)]=[150, 0.2, 900]. The distributions are given for various half-beam angle: (a) α=15°, (b) α=30°, (c) α=45°, and (d) α=60°.

Fig. 11.
Fig. 11.

(a) A schematic illustration of a prolate spheriodal nanoparticle in the presence of a metallic layer. The red circle and letter Q at the tip of prolate spheroid represents the charge accumulation created by the induced current due to the incident electromagnetic radiation. (b) An equivalent representation is illustrated. The metallic layer is replaced with another prolate spheroid particle at a distance D from the interface using image theory.

Fig. 12.
Fig. 12.

|E(r)|2 distribution on the x̂-ẑ cut plane for a gold prolate spheroid particle of a=100 nm and ξ=0.2 illuminated with a radially polarized focused light at λ=800 nm. The particle is (a) in the absence of any metallic layers, (b) in the presence of a 100 nm gold layer placed 5 nm, and (c) 10 nm away from the tip of the nanoparticle.

Fig. 13.
Fig. 13.

(a) |E(r)|2 distribution as a function of distance from the tip of a gold prolate spheroid particle of a=100 nm and ξ=0.2 illuminated with a radially polarized focused light at λ=800 nm. In the presence of metallic layer, the distance is taken as 5 nm above the metal layer. (b) A comparison of the frequency response of a prolate spheroid nanoparticle in the absence and presence of the metallic layer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[xyz]=[asinhξsinθcosϕasinhξsinθsinϕacoshξcosθ];0θπ,0<ϕ2π
E(rp)=iλ0αdθsinθcosθ02π[cosθcosϕcosθsinϕsinθ]exp(ik.rp)
rp=xpx̂+ypŷ+zpẑ=rpcosϕpx̂+rpsinϕpŷ+zpẑ
k=2πλ(sinθcosϕx̂+sinθsinϕŷcosθẑ),

Metrics