Abstract

We have analyzed the multi-mode interference effect depending on the wavelength and the polarization states of input beam in a multi-mode Ti:LiNbO3 waveguide at about 1300 nm region. The transmitted optical signal of a Ti:LiNbO3 waveguide shows the periodic oscillation as a function of input wavelength. The measured average periodicity of the oscillation in TM and TE polarization beams were about 18 nm and 48 nm, respectively. Actually, the periodicity is determined by the refractive index difference between the two modes (fundamental and first modes). Therefore, we have explained the experimental results with the theoretical calculations which are derived from a quasi-analytical technique based on the effective-refractive-index method and the equation of coupling length determined by the mode phase factor in the multi-mode waveguide.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Alferness, "Guided-Wave Devices for Optical Communication," IEEE J. Quantum Electron. QE- 17, 946-959 (1981).
    [CrossRef]
  2. T. Suhara, and H. Ishizuki, "Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
    [CrossRef]
  3. Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide," Opt. Express 12, 701-707 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-701.
    [CrossRef] [PubMed]
  4. R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
    [CrossRef]
  5. Y. L. Lee, C. Jung, Y. Noh, M. Park, C. Byeon, D. Ko, and J. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649-2655 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-12-2649.
    [CrossRef] [PubMed]
  6. Y. L. Lee, B. Yu, T. J. Eom, W. Shin, C. Jung, Y. Noh, J. Lee, D. Ko, and K. Oh, "All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide," Opt. Express 14, 2776-2782 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2776.
    [CrossRef] [PubMed]
  7. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
    [CrossRef]
  8. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
    [CrossRef]
  9. L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  10. C.-H. Bae and F. Koyama, "Design and Fabrication of Multi-Mode Interference Hollow Waveguide Optical Switch with Variable Air Core," Jpn. J. Appl. Phys. 45, 6648-6653 (2006).
    [CrossRef]
  11. A. Irace and G. Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express 11, 2807-2812 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2807.
    [CrossRef] [PubMed]
  12. M. R. Layton and J. A. Bucaro, "Optical fiber acoustic sensor utilizing mode-mode interference," Appl. Opt. 18, 666-670 (1979).
    [CrossRef] [PubMed]
  13. A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003).
    [CrossRef]
  14. M. P. Earnshaw and D. W. E. Allsopp, "Semiconductor Space Switches Based on Multimode Interference Couplers," J. Lightwave Technol. 20, 1-8 (2002).
    [CrossRef]
  15. Y. L. Sam and Y. H. Won, "1x3 Wavelength demultiplexer based on multimode interference with an index-modulation region,’" Microwave Opt. Technol. Lett. 43, 400-403 (2004).
    [CrossRef]
  16. L. O. Lierstuen and A. Sudbo, "8-Channel wavelength division multiplexer based on multimode interference couplers," IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
    [CrossRef]
  17. Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
    [CrossRef]
  18. E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988).
    [CrossRef]
  19. M. Bachmann. P. A. Besse, and H. Melchior, "General self-imaging properties in NXN multimode interference couplers including phase relations," Appl. Opt. 33, 3905-3911 (1994).
    [CrossRef] [PubMed]
  20. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
  21. R. Regener and W. Sohler, " Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
    [CrossRef]
  22. V. Mule’, R. Villalaz, T. K. Gaylord, and J. D. Meindl, "Photopolymer-Based Diffractive and MMI Waveguide Couplers," IEEE Photon. Technol. Lett. 16, 2490-2492 (2004).
    [CrossRef]
  23. D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
    [CrossRef]

2009

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

2008

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

2007

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

2006

2004

2003

A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003).
[CrossRef]

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

A. Irace and G. Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express 11, 2807-2812 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2807.
[CrossRef] [PubMed]

2002

2001

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

T. Suhara, and H. Ishizuki, "Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

1999

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

L. O. Lierstuen and A. Sudbo, "8-Channel wavelength division multiplexer based on multimode interference couplers," IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

1994

1988

E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988).
[CrossRef]

1985

R. Regener and W. Sohler, " Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

1981

R. C. Alferness, "Guided-Wave Devices for Optical Communication," IEEE J. Quantum Electron. QE- 17, 946-959 (1981).
[CrossRef]

1979

Alferness, R. C.

R. C. Alferness, "Guided-Wave Devices for Optical Communication," IEEE J. Quantum Electron. QE- 17, 946-959 (1981).
[CrossRef]

Allsopp, D. W. E.

Bachmann, M.

Bae, C.-H.

C.-H. Bae and F. Koyama, "Design and Fabrication of Multi-Mode Interference Hollow Waveguide Optical Switch with Variable Air Core," Jpn. J. Appl. Phys. 45, 6648-6653 (2006).
[CrossRef]

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988).
[CrossRef]

Breglio, G.

Bucaro, J. A.

Byeon, C.

Choi, I. W.

Choi, Y.-W.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Dou, Y.-P.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Earnshaw, M. P.

Eom, T. J.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Y. L. Lee, B. Yu, T. J. Eom, W. Shin, C. Jung, Y. Noh, J. Lee, D. Ko, and K. Oh, "All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide," Opt. Express 14, 2776-2782 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Faerbert, A.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Feise, G.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Fischer, G.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Glingener, C.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Gong, Q.-H.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Grundkoetter, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

Guo, H.-C.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Herrmann, H.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Hinz, S

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Imaeda, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Irace, A.

Ishizuki, H.

T. Suhara, and H. Ishizuki, "Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

Iwai, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003).
[CrossRef]

Jung, C.

Jung, H. S.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Kee, C.-S.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Kim, W.-K.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Ko, D.

Ko, D.-K.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide," Opt. Express 12, 701-707 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-701.
[CrossRef] [PubMed]

Koyama, F.

C.-H. Bae and F. Koyama, "Design and Fabrication of Multi-Mode Interference Hollow Waveguide Optical Switch with Variable Air Core," Jpn. J. Appl. Phys. 45, 6648-6653 (2006).
[CrossRef]

Layton, M. R.

Lee, H. Y.

Lee, H.-M.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Lee, H.-Y.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Lee, J.

Lee, Y. L.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Y. L. Lee, B. Yu, T. J. Eom, W. Shin, C. Jung, Y. Noh, J. Lee, D. Ko, and K. Oh, "All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide," Opt. Express 14, 2776-2782 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, C. Jung, Y. Noh, M. Park, C. Byeon, D. Ko, and J. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649-2655 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-12-2649.
[CrossRef] [PubMed]

Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide," Opt. Express 12, 701-707 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-701.
[CrossRef] [PubMed]

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

Li, Y.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Lierstuen, L. O.

L. O. Lierstuen and A. Sudbo, "8-Channel wavelength division multiplexer based on multimode interference couplers," IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

Liu, D.-Y.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003).
[CrossRef]

Mirvoda, V.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003).
[CrossRef]

Montrosset, I.

E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988).
[CrossRef]

Noe, R.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Noh, Y.

Noh, Y.-C.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide," Opt. Express 12, 701-707 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-701.
[CrossRef] [PubMed]

Oh, K.

Park, M.

Pavel, N.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Quiring, V.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

Regener, R.

R. Regener and W. Sohler, " Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Ricken, R.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

Sam, Y. L.

Y. L. Sam and Y. H. Won, "1x3 Wavelength demultiplexer based on multimode interference with an index-modulation region,’" Microwave Opt. Technol. Lett. 43, 400-403 (2004).
[CrossRef]

Sandel, D.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Schoepflin, A.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Schreiber, G.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

Shin, W.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Y. L. Lee, B. Yu, T. J. Eom, W. Shin, C. Jung, Y. Noh, J. Lee, D. Ko, and K. Oh, "All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide," Opt. Express 14, 2776-2782 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Shoji, I.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Sohler, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

R. Regener and W. Sohler, " Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988).
[CrossRef]

Suche, H.

Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide," Opt. Express 12, 701-707 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-701.
[CrossRef] [PubMed]

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

Sudbo, A.

L. O. Lierstuen and A. Sudbo, "8-Channel wavelength division multiplexer based on multimode interference couplers," IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

Suhara, T.

T. Suhara, and H. Ishizuki, "Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

Taira, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Won, Y. H.

Y. L. Sam and Y. H. Won, "1x3 Wavelength demultiplexer based on multimode interference with an index-modulation region,’" Microwave Opt. Technol. Lett. 43, 400-403 (2004).
[CrossRef]

Yamaguchi, S.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Yang, H.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Yang, W.-S.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

Yoshida-Dierolf, M.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

Yoshino, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Yu, B.

Yu, B.-A.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Yu, N. E.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).

R. Regener and W. Sohler, " Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Appl. Phys. Lett.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003).
[CrossRef]

Chin. Phys. Lett.

D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008).
[CrossRef]

Electron. Lett.

R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999).
[CrossRef]

IEEE J. Quantum Electron. QE

R. C. Alferness, "Guided-Wave Devices for Optical Communication," IEEE J. Quantum Electron. QE- 17, 946-959 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Suhara, and H. Ishizuki, "Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007).
[CrossRef]

V. Mule’, R. Villalaz, T. K. Gaylord, and J. D. Meindl, "Photopolymer-Based Diffractive and MMI Waveguide Couplers," IEEE Photon. Technol. Lett. 16, 2490-2492 (2004).
[CrossRef]

L. O. Lierstuen and A. Sudbo, "8-Channel wavelength division multiplexer based on multimode interference couplers," IEEE Photon. Technol. Lett. 7, 1034-1036 (1995).
[CrossRef]

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003).
[CrossRef]

J. Lightwave Technol.

E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988).
[CrossRef]

M. P. Earnshaw and D. W. E. Allsopp, "Semiconductor Space Switches Based on Multimode Interference Couplers," J. Lightwave Technol. 20, 1-8 (2002).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

C.-H. Bae and F. Koyama, "Design and Fabrication of Multi-Mode Interference Hollow Waveguide Optical Switch with Variable Air Core," Jpn. J. Appl. Phys. 45, 6648-6653 (2006).
[CrossRef]

Microwave Opt. Technol. Lett.

Y. L. Sam and Y. H. Won, "1x3 Wavelength demultiplexer based on multimode interference with an index-modulation region,’" Microwave Opt. Technol. Lett. 43, 400-403 (2004).
[CrossRef]

Opt. Express

Supplementary Material (1)

» Media 1: MOV (947 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup to observe the MMI effect in a Ti:LiNbO3 waveguide depending on the wavelength and the polarization states of input beam; WSFL : wavelength swept fiber laser, and OSA : optical spectrum analyzer, PC : polarization controller, PBS : polarization beam splitter, BS : beam splitter, IR Camera : infrared camera.

Fig. 2.
Fig. 2.

Output beam mode profiles as a function of wavelength. The wavelength of WSFL was swept from 1277.5 nm to 1318.5 nm (Media 1).

Fig. 3.
Fig. 3.

Transmitted optical signal of TM polarized beam as a function of wavelength. The black scatter-line and blue scatter-line indicate the optical spectra which are measured at position A and B, respectively.

Fig. 4.
Fig. 4.

(a) The calculated effective refractive indices of the fundamental and first-order modes in a TM polarized beam. (b) The number of oscillation in a 33-mm Ti:LiNbO3 waveguide as a function of input wavelength. The black and red lines indicate theoretical and experimental data, respectively. The filled (oe-17-13-10718-i001.jpg) and open (oe-17-13-10718-i002.jpg) circles indicate maximum constructive position and destructive position, respectively.

Fig. 5.
Fig. 5.

Transmitted optical signal of TE polarized beam as a function of wavelength. The black scatter-line and blue scatter-line indicate the optical spectra which are measured at position A and B, respectively.

Fig. 6.
Fig. 6.

(a) The calculated effective refractive indices of the fundamental and first-order modes in a TE polarized beam. (b) The number of oscillation in a 33 mm Ti:LiNbO3 waveguide as a function of input wavelength. The black and red lines indicate theoretical and experimental data, respectively. The filled (oe-17-13-10718-i003.jpg) and vacant (oe-17-13-10718-i004.jpg) circles indicate maximum constructive position and destructive position, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N i = L 2 L c = n i , 0 n i , 1 λ 0 L ,
L c = π β i , 0 β i , 1 = λ 0 2 ( n i , 0 n i , 1 ) ,
n ( x , y ) = n sub + δ n ( x , y ) ,

Metrics