Abstract

Recent advances in solid state light source efficiency and luminance present the technical challenge of distributing light from very small point sources to large areas, with area distribution ratios having orders of magnitude greater than previously addressed. Broad adoption of LEDs in lighting and liquid crystal displays is in part contingent on addressing this fundamental light distribution issue. Here we present new materials based on giant birefringent nanotechnology which address these deficiencies allowing us to guide light in air via a novel light distribution system. Resulting from controlled in-plane and out-of-plane x,y,z refractive indices of adjacent layers, these multilayer interference films possess both angle selective and polarization selective reflectance. The angle selectivity can be tuned in both azimuth and polar angle, relieving a key constraint of prior materials. Our work has been done on a physically large scale enabling demonstration of large light management systems of industrial and practical relevance.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. US Department of Energy. Solid-State Lighting R&D Multi-Year Program Plan FY’09-FY’14 pp. 77 (2008).
  2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
    [CrossRef]
  3. J. Broderick, “Next-Generation Lighting Initiative at the U.S. Department of Energy: Catalyzing Science into the Marketplace,” IEEE J. Display Technol. 3(2), 91–97 (2007).
    [CrossRef]
  4. K. Hirohisa and The History of Liquid-Crystal Displays., “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
    [CrossRef]
  5. P. Rathert, W. Lutzeyer, and W. E. Goddwin, “Philipp Bozzini (1773–1809) and the lichtleiter,” Urology 3(1), 113–118 (1974).
    [CrossRef] [PubMed]
  6. CIE 164. Hollow Light Guide Technology and Application (2005).
  7. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
    [CrossRef] [PubMed]
  8. http://www.furukawaamerica.com/resource/MCPETLightPanelsFurukawa.pdf .
  9. J. McKenzie, Design Considerations for Intelligent, Color-Changeable LED Luminaires. LEDs Magazine 33–39 (2008).
  10. D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 1, 502–510 (2006).

2007

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

J. Broderick, “Next-Generation Lighting Initiative at the U.S. Department of Energy: Catalyzing Science into the Marketplace,” IEEE J. Display Technol. 3(2), 91–97 (2007).
[CrossRef]

2006

D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 1, 502–510 (2006).

2002

K. Hirohisa and The History of Liquid-Crystal Displays., “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[CrossRef]

2000

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

1974

P. Rathert, W. Lutzeyer, and W. E. Goddwin, “Philipp Bozzini (1773–1809) and the lichtleiter,” Urology 3(1), 113–118 (1974).
[CrossRef] [PubMed]

Berreman, D. W.

D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 1, 502–510 (2006).

Broderick, J.

J. Broderick, “Next-Generation Lighting Initiative at the U.S. Department of Energy: Catalyzing Science into the Marketplace,” IEEE J. Display Technol. 3(2), 91–97 (2007).
[CrossRef]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Goddwin, W. E.

P. Rathert, W. Lutzeyer, and W. E. Goddwin, “Philipp Bozzini (1773–1809) and the lichtleiter,” Urology 3(1), 113–118 (1974).
[CrossRef] [PubMed]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Hirohisa, K.

K. Hirohisa and The History of Liquid-Crystal Displays., “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[CrossRef]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Lutzeyer, W.

P. Rathert, W. Lutzeyer, and W. E. Goddwin, “Philipp Bozzini (1773–1809) and the lichtleiter,” Urology 3(1), 113–118 (1974).
[CrossRef] [PubMed]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Rathert, P.

P. Rathert, W. Lutzeyer, and W. E. Goddwin, “Philipp Bozzini (1773–1809) and the lichtleiter,” Urology 3(1), 113–118 (1974).
[CrossRef] [PubMed]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

IEEE J. Display Technol.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol. 3(2), 160–175 (2007).
[CrossRef]

J. Broderick, “Next-Generation Lighting Initiative at the U.S. Department of Energy: Catalyzing Science into the Marketplace,” IEEE J. Display Technol. 3(2), 91–97 (2007).
[CrossRef]

J. Opt. Soc. Am.

D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 1, 502–510 (2006).

Proc. IEEE

K. Hirohisa and The History of Liquid-Crystal Displays., “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[CrossRef]

Science

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Urology

P. Rathert, W. Lutzeyer, and W. E. Goddwin, “Philipp Bozzini (1773–1809) and the lichtleiter,” Urology 3(1), 113–118 (1974).
[CrossRef] [PubMed]

Other

CIE 164. Hollow Light Guide Technology and Application (2005).

http://www.furukawaamerica.com/resource/MCPETLightPanelsFurukawa.pdf .

J. McKenzie, Design Considerations for Intelligent, Color-Changeable LED Luminaires. LEDs Magazine 33–39 (2008).

US Department of Energy. Solid-State Lighting R&D Multi-Year Program Plan FY’09-FY’14 pp. 77 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Improvements in (a) luminous efficacy ηL (lm/W) and (b) luminance (cd/m2) for conventional and solid state light sources over time. LED data points are color coded corresponding to emission wavelength. Ranges required for various applications are shown to the right of chart (b). Source: Michael R. Krames, Member, IEEE, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, Fellow, IEEE; Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting; IEEE J. Display Technol., Vol. 3, No. 2, June 2007. (c) Area conversion ratio, defined as the ratio of the emissive area of the system to that of the input source, for fluorescent and solid state light sources.

Fig. 2
Fig. 2

(a) Hollow mixing cavity consisting of a collimated LED light source, a front transflector of hemispheric reflectance RHemi,F and a back reflector of hemispheric reflectance RHemi,B that together provide light transport and light extraction. In this illustration, the front transflector transmits only the chosen polarization (blue arrows) within a desired angular cone while the orthogonal polarization (red arrows) is recycled. (b) Cavity efficiency computed as a function of RHemi,F × RHemi,B for various levels of material absorption per bounce (effects of light source absorption not included). The area in green represents the preferred material property combination for an efficient and uniform hollow cavity.

Fig. 3
Fig. 3

Reflectance for s- and p-polarized light averaged across 450-650 nm as a function of incident polar angle for (a) a specular multilayer interference reflector on a strongly absorbing substrate; (b) the same reflector as in (a) with a surface diffuser of index 1.5; (c) the same reflector as in (b) with a reflection band extended into the near infrared; (d) the same reflector as in (c) with a surface diffuser of index 1.35. Calculated and experimental total hemispheric reflectivity values are given for each example.

Fig. 4
Fig. 4

Angle and polarization selective transflectors. The principle-axis refractive index values of the birefringent materials enabling these transflectors are given on the right. Those corresponding to the conoscopic plots of transmittance on the left are highlighted in black.

Fig. 5
Fig. 5

Computational comparison of transported light rays in (a) solid light-guide, (b) hollow light-guide using TIR prismatic structures and (c) hollow light-guide using new angle-selective transflectors. In each case the light source is an un-coupled Lambertian LED. Only the rays that propagate to the distal end are shown. Perfectly reflecting specular walls are assumed for the simulation. One of the key advantages of angle-selective transflectors is their low dependence on azimuthal angle, which allows for near-Lambertian injection in the plane of the cavity and enhanced mixing.

Fig. 6
Fig. 6

Photographic images of the output light distribution for (a) an open hollow cavity lined with a 99.13% RHemi specular reflector and containing a single red LED; (b) the same hollow cavity with a specular angle-selective transflector as the front output surface demonstrating the “hall-of-mirrors” effect; (c) the same hollow cavity with a semi-specular transflector as the front output surface demonstrating high spatial uniformity; (d) the same hollow cavity as in (c) with a 98.5% RHemi Lambertian reflector (MCPET) on the back surface. (e) Side-view and (f) front-view of a 32” LCD backlight prototype consisting of a 16mm-deep single-edge illuminated hollow cavity with 72 high power white LEDs. The measured output angular distribution of the backlight combined with a 1080p LCD panel from a Sharp LC-32D62U TV is shown as an inset in (f).

Metrics