Abstract

Optical transmission measurements were made on 98% porosity silica aerogel samples under various degrees of uniaxial strain. Uniaxially compressed aerogels exhibit large birefringence, proportional to the amount of compression, up to the 15% strain studied. The birefringence is mostly reversible and reproducible through multiple compression-decompression cycles. Our study demonstrates that uniaxially strained high porosity aerogels can be used as tunable waveplates in a broad spectral range.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature 127(3211), 741 (1931).
    [CrossRef]
  2. J. Fricke, Sci. Am. 258, 92 (1988).
    [CrossRef]
  3. J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” Struct. Bonding 77, 37–87 (1992).
    [CrossRef]
  4. D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
    [CrossRef]
  5. C. Weust, and T. Tillotson, “Aerogel-supported filament,” US Patent 5416376, (1992).
  6. C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
    [CrossRef]
  7. M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
    [CrossRef]
  8. M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
    [CrossRef]
  9. M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996).
    [CrossRef]
  10. W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).
  11. C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
    [CrossRef]
  12. J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
    [CrossRef]
  13. J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988).
    [CrossRef]
  14. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [CrossRef] [PubMed]
  15. M. Born, and E. Wolf, Principles of Optics (Pergamon press, United Kingdom 1970), Chap 2, 14.
  16. T. M. Tillotson and L. W. Hrubesh, “Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” J. Non-Cryst. Solids 145, 44–50 (1992).
    [CrossRef]
  17. P. Bhupathi, J. Hwang, R. M. Martin, L. Jaworskii, N. Mulders, D. B. Tanner, Y. Lee, in preparation.
  18. A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
    [CrossRef]
  19. P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
    [CrossRef]
  20. W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).
  21. D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
    [CrossRef]
  22. G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, K. Button, ed. (Academic Press, Orlando, Fla., 1985).
  23. J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67(11-12), 351–357 (1945).
    [CrossRef]

2009 (1)

W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).

2008 (1)

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

2005 (1)

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

2002 (1)

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

2001 (1)

C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
[CrossRef]

1998 (1)

A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
[CrossRef]

1996 (1)

M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996).
[CrossRef]

1992 (3)

J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” Struct. Bonding 77, 37–87 (1992).
[CrossRef]

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

T. M. Tillotson and L. W. Hrubesh, “Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” J. Non-Cryst. Solids 145, 44–50 (1992).
[CrossRef]

1988 (3)

J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988).
[CrossRef]

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

J. Fricke, Sci. Am. 258, 92 (1988).
[CrossRef]

1984 (1)

1975 (1)

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
[CrossRef]

1974 (1)

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

1945 (1)

J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67(11-12), 351–357 (1945).
[CrossRef]

1931 (1)

S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature 127(3211), 741 (1931).
[CrossRef]

1871 (1)

W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).

Beck, A.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

Blinstein, S.

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Bonnin, F.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Büttner, D.

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

Cantin, M.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Caps, R.

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

Casse, M.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Chan, M.

M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996).
[CrossRef]

Choi, H.

W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Choi, H. C.

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

Davis, J. P.

W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Efron, U.

Emmerling, A.

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” Struct. Bonding 77, 37–87 (1992).
[CrossRef]

Fricke, J.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” Struct. Bonding 77, 37–87 (1992).
[CrossRef]

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988).
[CrossRef]

J. Fricke, Sci. Am. 258, 92 (1988).
[CrossRef]

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

Glora, M.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Gross, J.

J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988).
[CrossRef]

Halperin, W. P.

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

Halperin, W.P.

W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).

Haranath, D.

A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
[CrossRef]

Heinemann, U.

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

Hess, L. D.

Hrubesh, L. W.

T. M. Tillotson and L. W. Hrubesh, “Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” J. Non-Cryst. Solids 145, 44–50 (1992).
[CrossRef]

Hümmer, E.

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

Jouan, R.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Kadur, A.

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

Kistler, S. S.

S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature 127(3211), 741 (1931).
[CrossRef]

Koch, L.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Körner, W.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

Korwin, M. L.

C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
[CrossRef]

Kuhn, J.

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

Lee, Y.

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

Lippman, T. M.

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Lurio, L. B.

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Meier, S. R.

C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
[CrossRef]

Merzbacher, C. I.

C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
[CrossRef]

Mestreau, P.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Moutel, J.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Mulders, N.

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996).
[CrossRef]

Osborn, J. A.

J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67(11-12), 351–357 (1945).
[CrossRef]

Pajonk, G. M.

A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
[CrossRef]

Petricevic, R.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Pierce, J. R.

C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
[CrossRef]

Pollanen, J.

W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Pötter, F. J.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Reichenauer, G.

J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988).
[CrossRef]

Reim, M.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Reppy, J.

M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996).
[CrossRef]

Roussel, D.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Schliermann, T.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Schmidt, Ch.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Sellmeier, W.

W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).

Shirer, K. R.

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

Stroud, D.

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
[CrossRef]

Teichner, S. J.

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Tillotson, T. M.

T. M. Tillotson and L. W. Hrubesh, “Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” J. Non-Cryst. Solids 145, 44–50 (1992).
[CrossRef]

Venkateswara Rao, A.

A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
[CrossRef]

Vicente, C. L.

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

Wagh, P. B.

A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
[CrossRef]

Wang, P.

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

Weth, M.

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Wu, S. T.

Xia, J. S.

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

Annalen der Physik und Chemie (1)

W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).

Appl. Opt. (1)

J. Mater. Synth. Process. (1)

A. Venkateswara Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels,” J. Mater. Synth. Process. 6(1), 37–48 (1998).
[CrossRef]

J. Non-Cryst. Solids (4)

P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, “Optical investigations of silica aerogels,” J. Non-Cryst. Solids 145, 141–145 (1992).
[CrossRef]

T. M. Tillotson and L. W. Hrubesh, “Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” J. Non-Cryst. Solids 145, 44–50 (1992).
[CrossRef]

J. Pollanen, K. R. Shirer, S. Blinstein, J. P. Davis, H. Choi, T. M. Lippman, W. P. Halperin, and L. B. Lurio, “Globally anisotropic high porosity silica aerogels,” J. Non-Cryst. Solids 354(40-41), 4668–4674 (2008).
[CrossRef]

C. I. Merzbacher, S. R. Meier, J. R. Pierce, and M. L. Korwin, “Carbon aerogels as broadband non-reflective materials,” J. Non-Cryst. Solids 285(1-3), 210–215 (2001).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. Gross, G. Reichenauer, and J. Fricke, “Mechanical properties of SiO2 aerogels,” J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988).
[CrossRef]

J. Phys. Soc. Jpn. (1)

W.P. Halperin, H. Choi, J. P. Davis, and J. Pollanen, “Impurity effects of aerogel in superfluid 3He,” J. Phys. Soc. Jpn. 77, 111002 1–6 (2009).

Nature (1)

S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature 127(3211), 741 (1931).
[CrossRef]

Nucl. Instrum. Methods (1)

M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, “Silica aerogels used as Cherenkov radiators,” Nucl. Instrum. Methods 118(1), 177–182 (1974).
[CrossRef]

Phys. Rev. (1)

J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67(11-12), 351–357 (1945).
[CrossRef]

Phys. Rev. B (2)

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
[CrossRef]

C. L. Vicente, H. C. Choi, J. S. Xia, W. P. Halperin, N. Mulders, and Y. Lee, “A-B transition of superfluid 3He in aerogel and the effect of anisotropic scattering,” Phys. Rev. B 72, 094519 (2005).
[CrossRef]

Phys. Today (1)

M. Chan, N. Mulders, and J. Reppy, “Helium in aerogel,” Phys. Today 49(8), 30–38 (1996).
[CrossRef]

Sci. Am. (1)

J. Fricke, Sci. Am. 258, 92 (1988).
[CrossRef]

Sol. Energy (2)

D. Büttner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur, and J. Fricke, “Thermal loss coefficients of low-density silica aerogel tiles,” Sol. Energy 40(1), 13–15 (1988).
[CrossRef]

M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, and F. J. Pötter, “Highly insulating aerogel glazing for solar energy usage,” Sol. Energy 72(1), 21–29 (2002).
[CrossRef]

Struct. Bonding (1)

J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” Struct. Bonding 77, 37–87 (1992).
[CrossRef]

Other (4)

C. Weust, and T. Tillotson, “Aerogel-supported filament,” US Patent 5416376, (1992).

P. Bhupathi, J. Hwang, R. M. Martin, L. Jaworskii, N. Mulders, D. B. Tanner, Y. Lee, in preparation.

M. Born, and E. Wolf, Principles of Optics (Pergamon press, United Kingdom 1970), Chap 2, 14.

G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, K. Button, ed. (Academic Press, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. The axis of compression is fixed in the vertical direction. The polarizer is also fixed at –45° from the axis of compression. θ gives the angular position of the analyzer with respect to the polarizer.

Fig. 2
Fig. 2

Transmittance at θ = 90°, T⊥, of sample #1 as a function of wavelength for 0–15% compression. The solid (dotted) traces represent transmittance taken on compression (decompression).

Fig. 3
Fig. 3

Transmission of three aerogels at specific angles θ, as a function of wavelength for compressions of 0% (left) and 15% (right). In the top, middle, and bottom rows are data for samples #1, #2, and #3, respectively.

Fig. 4
Fig. 4

The top three panels show the measured and fitted T⊥ (θ = 90°) for all three samples at 15% compression. The lower left shows |Δn|, obtained in two ways (see text) at 15% compression. The lower right panel gives the compression-dependent birefringence, |Δn|, at 633 nm.

Tables (1)

Tables Icon

Table 1 Parameters for aerogel samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=2πdcΔnλ
T=Toer3dcλ4sin2(πdcΔnλ)
T=Toer3dcλ4cos2(πdcΔnλ)
|Δϕ|={kπ+2tan1TTk=0,2,4,(k+1)π2tan1TTk=1,3,5,
faεaεgεa+(1g)ε+(1fa)εbεgεb+(1g)ε=0

Metrics