Abstract

We newly develop a temporal gating scheme to enlarge the measurement range of Brillouin optical correlation-domain reflectometry (BOCDR) for a fiber-optic distributed strain measurement. In this scheme, the trade-off problem between the measurement range and the spatial resolution can be dissolved. 66-cm spatial resolution and 1-km measurement range were simultaneously obtained with 50-Hz sampling rate.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)

Yosuke Mizuno, Weiwen Zou, Zuyuan He, and Kazuo Hotate
Opt. Express 16(16) 12148-12153 (2008)

Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme

Yosuke Mizuno, Zuyuan He, and Kazuo Hotate
Opt. Express 18(6) 5926-5933 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
    [Crossref]
  2. M. Nikles, L. Thevenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [Crossref] [PubMed]
  3. T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” IEEE J. Lightwave Technol. 7, 1170–1176 (1989).
    [Crossref]
  4. A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1501–1503 (2005).
    [Crossref]
  5. Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B, 1810–1815 (2007).
    [Crossref]
  6. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).
  7. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 197–199 (2002).
    [Crossref]
  8. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
    [Crossref] [PubMed]
  9. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
    [Crossref] [PubMed]
  10. Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
    [Crossref]
  11. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).
  12. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).
  13. Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
    [Crossref]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).
  15. K. Hotate and Z. He, “Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing,” IEEE J. Lightwave Technol. 24, 2541–2557 (2006).
    [Crossref]
  16. M. Kannou, S. Adachi, and K. Hotate, “Temporal gating scheme for enlargement of measurement range of Brillouin optical correlation domain analysis for optical fiber distributed strain measurement,” Proc. 16th Intern. Conf. Optical Fiber Sensors, 454–457 (2003).
  17. K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Cont. Meas. Syst. Int. 1, 271–274 (2008).

2009 (1)

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[Crossref]

2008 (2)

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Cont. Meas. Syst. Int. 1, 271–274 (2008).

2007 (2)

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[Crossref]

Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B, 1810–1815 (2007).
[Crossref]

2006 (2)

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and Z. He, “Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing,” IEEE J. Lightwave Technol. 24, 2541–2557 (2006).
[Crossref]

2005 (1)

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1501–1503 (2005).
[Crossref]

2002 (1)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 197–199 (2002).
[Crossref]

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

1996 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

1989 (1)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” IEEE J. Lightwave Technol. 7, 1170–1176 (1989).
[Crossref]

Adachi, S.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[Crossref]

M. Kannou, S. Adachi, and K. Hotate, “Temporal gating scheme for enlargement of measurement range of Brillouin optical correlation domain analysis for optical fiber distributed strain measurement,” Proc. 16th Intern. Conf. Optical Fiber Sensors, 454–457 (2003).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).

Arai, H.

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Cont. Meas. Syst. Int. 1, 271–274 (2008).

Brown, A. W.

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1501–1503 (2005).
[Crossref]

Brown, K.

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1501–1503 (2005).
[Crossref]

Colpitts, B. G.

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1501–1503 (2005).
[Crossref]

Facchini, M.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

Fellay, A.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

He, Z.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and Z. He, “Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing,” IEEE J. Lightwave Technol. 24, 2541–2557 (2006).
[Crossref]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” IEEE J. Lightwave Technol. 7, 1170–1176 (1989).
[Crossref]

Hotate, K.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Cont. Meas. Syst. Int. 1, 271–274 (2008).

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and Z. He, “Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing,” IEEE J. Lightwave Technol. 24, 2541–2557 (2006).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 197–199 (2002).
[Crossref]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

M. Kannou, S. Adachi, and K. Hotate, “Temporal gating scheme for enlargement of measurement range of Brillouin optical correlation domain analysis for optical fiber distributed strain measurement,” Proc. 16th Intern. Conf. Optical Fiber Sensors, 454–457 (2003).

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Kannou, M.

M. Kannou, S. Adachi, and K. Hotate, “Temporal gating scheme for enlargement of measurement range of Brillouin optical correlation domain analysis for optical fiber distributed strain measurement,” Proc. 16th Intern. Conf. Optical Fiber Sensors, 454–457 (2003).

Koyamada, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[Crossref]

Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B, 1810–1815 (2007).
[Crossref]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

Mizuno, Y.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

Nikles, M.

M. Nikles, L. Thevenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[Crossref] [PubMed]

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

Robert, P.

M. Nikles, L. Thevenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[Crossref] [PubMed]

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

Sakairi, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[Crossref]

Song, K. Y.

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Cont. Meas. Syst. Int. 1, 271–274 (2008).

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[Crossref] [PubMed]

Takeuchi, N.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[Crossref]

Tanaka, M.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 197–199 (2002).
[Crossref]

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” IEEE J. Lightwave Technol. 7, 1170–1176 (1989).
[Crossref]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[Crossref] [PubMed]

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

Zou, W.

IEEE J. Lightwave Technol. (2)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” IEEE J. Lightwave Technol. 7, 1170–1176 (1989).
[Crossref]

K. Hotate and Z. He, “Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing,” IEEE J. Lightwave Technol. 24, 2541–2557 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (5)

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[Crossref]

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[Crossref]

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1501–1503 (2005).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 197–199 (2002).
[Crossref]

IEICE Trans. Commun. (2)

Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B, 1810–1815 (2007).
[Crossref]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Opt. Express (1)

Opt. Lett. (2)

SICE J. Cont. Meas. Syst. Int. (1)

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Cont. Meas. Syst. Int. 1, 271–274 (2008).

Other (3)

M. Kannou, S. Adachi, and K. Hotate, “Temporal gating scheme for enlargement of measurement range of Brillouin optical correlation domain analysis for optical fiber distributed strain measurement,” Proc. 16th Intern. Conf. Optical Fiber Sensors, 454–457 (2003).

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Experimental setup of the BOCDR with a temporal gating scheme. (b) Pulse shapes of the pump light and the reference light.

Fig. 2.
Fig. 2.

Structure of the FUT.

Fig. 3.
Fig. 3.

Distribution of (a) BGS, and (b) BFS.

Fig. 4.
Fig. 4.

Measured BGS without the temporal gating scheme applied, when there are multiple correlation peaks within the FUT. The length of the FUT is 1 km. d m represents the interval between the correlation peaks, and N the number of undesired peaks within the FUT.

Fig. 5.
Fig. 5.

Measured BGS when (a) the first, (b) the second, and (c) the third correlation peaks were selected, with (blue) and without (orange) strain applied to the section corresponding to the third correlation peak.

Fig. 6.
Fig. 6.

Structure of the FUT.

Fig. 7.
Fig. 7.

Distribution of (a) BGS, and (b) BFS.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dm=Vg2fm ,
Δz=VgΔνB2πfmΔf,
NR=dmΔz=πΔfΔνB.
tw=12fm ,

Metrics