Abstract

A scalable and accurate technique for measuring the group index and dispersion of optical fibers is used to provide the first accurate measurements of dispersion slope in hollow-core photonic band-gap fibers. We present data showing group index, group-velocity dispersion and dispersion slope in hollow-core fibers guiding at both 800 nm and 1064 nm wavelength.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  2. J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16(13), 9628–9644 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9628 .
    [CrossRef] [PubMed]
  3. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832–2837 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2832 .
    [CrossRef] [PubMed]
  4. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2231 .
    [CrossRef] [PubMed]
  5. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  6. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-13-1180 .
    [CrossRef]
  7. F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-2-347 ).
    [CrossRef] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-1-25 .
    [CrossRef]
  9. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19(9), 2148–2155 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-9-2148
    [CrossRef]
  10. G. P. Agrawal, Nonlinear fiber optics, 4th Edition, (Academic Press 2007).
  11. G. Bouwmans, F. Luan, and P. St Jonathan Knight, “J. Russell, L. Farr, B. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11, 1613–1620 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-14-1613 .
    [CrossRef] [PubMed]
  12. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1142 .
    [CrossRef] [PubMed]
  13. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [CrossRef]

2008 (2)

2004 (2)

2003 (3)

2002 (2)

2000 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1998 (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Birks, T. A.

Bouwmans, G.

Broderick, N. G. R.

Broeng, J.

Coen, S.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

de Matos, C.

Dudley, J. M.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gèrôme, F.

Hansen, K.

Hansen, T.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Knight, J. C.

Knox, W.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Laegsgaard, J.

Leon-Saval, S. G.

Lim, H.

Lu, F.

Luan, F.

Man, T.-P. M.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Ortigosa-Blanch, A.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Ranka, J. K.

Roberts, P. J.

J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16(13), 9628–9644 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9628 .
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

St Jonathan Knight, P.

Stentz, A. J.

Taylor, J.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Windeler, R. S.

Wise, F.

J. Opt. Soc. Am. B (1)

Opt. Express (6)

G. Bouwmans, F. Luan, and P. St Jonathan Knight, “J. Russell, L. Farr, B. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11, 1613–1620 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-14-1613 .
[CrossRef] [PubMed]

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1142 .
[CrossRef] [PubMed]

J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16(13), 9628–9644 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9628 .
[CrossRef] [PubMed]

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832–2837 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2832 .
[CrossRef] [PubMed]

H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2231 .
[CrossRef] [PubMed]

F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-2-347 ).
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear fiber optics, 4th Edition, (Academic Press 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two separate interferometric setups (a & b), outlined with dashed lines. They use a common pump source. (a) The arms of the interferometer are unbalanced by a length corresponding to the cavity length in order to test the pulse to pulse coherence of a generated supercontinuum as a function of wavelength. (b) The interferometric setup used to measure the dispersion of a test fiber, where the test fiber is of a length comparable to the length of the laser cavity.

Fig. 2
Fig. 2

Data showing the decrease in pulse to pulse coherence for different lengths of supercontinuum fiber. (a) The grey curve and black curves are the generated spectra for 4 cm and 30 cm lengths of 1.5 μm core diameter supercontinuum fiber respectively, the spectra are not normalized to each other. The output powers are 50 and 40 mW respectively. (b) Shows the difference in coherence between the two spectra in Fig. 2(a), measured using the setup in Fig. 1(a).

Fig. 3
Fig. 3

The properties of a HC-PCF guiding at 800 nm. (a) The group index of the two guided polarizations of the fundamental mode, (b) Dispersion curves calculated for Fig. 3a; points show the two-point difference of the recorded group index points, the line is the derivative of a fitted 6th order polynomial, (c) The ratio of dispersion to dispersion slope; the points correspond to the second differential between adjacent points in Fig. 3a, the curve is a second derivative of the polynomial fit, (d) The attenuation of the fiber.

Fig. 4
Fig. 4

(a) The measured dispersion of the two polarization states of the guided mode for a fiber guiding at 1064 nm, the points correspond to the difference of recorded points of group delay, the line is a derivative of a fitted 6th order polynomial, (b) The points correspond to the second difference of the recorded points in Fig. 3.(a) the curve is a second derivative of the polynomial fit, (c) The attenuation of the fiber with a SEM inset, (d) A modeled dispersion curve and subsequently calculated curve of the dispersion to dispersion slope ratio, in black and grey respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d2βdω2=β2=λ22πcD

Metrics