Abstract

We propose a composite waveguide configuration based on an inverted polymer channel structure with upper nematic liquid crystal cladding. This configuration can achieve a more homogenous liquid crystal molecular alignment between the core and the liquid crystal material by minimizing the rubbing damage during preparation of the alignment layer. We demonstrated our idea with a variable optical attenuator which exhibited a 24 dB of attenuation range over a tuning peak voltage of 10 V at 1550 nm.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef] [PubMed]
  2. K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express 15(26), 18351–18356 (2007).
    [CrossRef] [PubMed]
  3. H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
    [CrossRef]
  4. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  5. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).
    [CrossRef] [PubMed]
  6. Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008).
    [CrossRef] [PubMed]
  7. W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
    [CrossRef] [PubMed]
  8. C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
    [CrossRef]
  9. H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
    [CrossRef]
  10. V. G. Chigrinov, “Liquid crystal devices for photonics applications,” Proc. SPIE 6781, 67811M1–12 (2007)
  11. A. Diaz, S. Kubo, D. H. Kwon, J. Park, D. Werner, T. Mallouk, and I. C. Khoo, “Nonlinear liquid crystal Na no-metamaterials” IEEE/LEOS Winter Topical Meeting Series, 2008, 94–95(2008)
  12. I. C. Khoo, Liquid Crystal (John Wiley & Sons, 2007), Chap.6.
  13. J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
    [CrossRef]
  14. J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
    [CrossRef]
  15. A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
    [CrossRef]
  16. M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
    [CrossRef]
  17. S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
    [CrossRef]
  18. A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
    [CrossRef] [PubMed]
  19. W. C. Chuang, J. S. Lin, K. Y. Lee, and W. Y. Lee, “Polymer waveguide switch using liquid crystal overlayer,” SPIE‘s International Symposium on Opto-Electrics and Micro-Photonics, 1998.
  20. R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
    [CrossRef]
  21. Q. Wang and G. Farrell, “Integrated liquid crystal switch for both TE and TM modes: proposal and design,” J. Opt. Soc. Am. A 24(10), 3303–3308 (2007).
    [CrossRef]
  22. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004).
    [CrossRef] [PubMed]
  23. H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
    [CrossRef]
  24. H. Onodera, I. Awai, and J. Ikenoue, “Refractive-index measurement of bulk materials: prism coupling method,” Appl. Opt. 22(8), 1194–1197 (1983).
    [CrossRef] [PubMed]
  25. M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
    [CrossRef]

2008 (3)

2007 (3)

2006 (2)

A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).
[CrossRef] [PubMed]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

2005 (1)

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[CrossRef]

2004 (3)

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004).
[CrossRef] [PubMed]

C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
[CrossRef]

J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[CrossRef]

2003 (1)

H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[CrossRef]

2002 (1)

R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[CrossRef]

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

1996 (1)

H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[CrossRef]

1992 (1)

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[CrossRef]

1990 (1)

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

1983 (1)

1982 (1)

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[CrossRef]

1977 (1)

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[CrossRef]

Abe, Y.

Arii, K.

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

Asai, K.

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

Ashizawa, H.

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

Asquini, R.

A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[CrossRef]

Awai, I.

Baets, R.

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[CrossRef]

Beccherelli, R.

Beeckman, J.

Bougrenet, J. L. D.

J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[CrossRef]

Burghoff, J.

Cambournac, C.

Caputo, R.

Chan, H. P.

H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[CrossRef]

Chetrit, Y.

Chiang, K. S.

Choi, C. G.

C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
[CrossRef]

Chow, C. K.

H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[CrossRef]

Ciftcioglu, B.

D’Alessandro, A.

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

D’Alessandro, A.

A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[CrossRef]

Das, A. K.

H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[CrossRef]

De Sio, L.

Desmet, H.

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[CrossRef]

Donisi, B. D.

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Donisi, D.

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Farrell, G.

Haelterman, M.

Haruna, M.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[CrossRef]

He, Z.

Hu, C.

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[CrossRef]

Hutsebaut, X.

Ikenoue, J.

Izhaky, N.

Jin, W.

Kawachi, M.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[CrossRef]

Keil, H. H.

H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[CrossRef]

Kobayashi, M.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[CrossRef]

Kwon, Y. S.

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[CrossRef]

La Tocnaye, D. B. D.

J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[CrossRef]

Lederer, F.

Li, Y.

Liao, L.

Liu, A.

Liu, L.

Liu, Q.

Maru, K.

Muto, S.

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

Nagata, T.

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

Neyts, K.

Nguyen, H.

Nishihara, H.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[CrossRef]

Noda, J.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[CrossRef]

Nolte, S.

Onodera, H.

Paniccia, M.

Pertsch, T.

Rubin, D.

Segawa, Y.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[CrossRef]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Szameit, A.

Terui, H.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[CrossRef]

Tünnermann, A.

Umeton, C.

Wang, Q.

Winnery, J. R.

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[CrossRef]

Xu, L.

Yao, H. H.

H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[CrossRef]

Zawadzki, C.

H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[CrossRef]

Zhang, Y.

Appl. Opt. (1)

Electron. Lett. (2)

H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[CrossRef]

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[CrossRef]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[CrossRef]

J. Appl. Phys. (1)

H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[CrossRef]

Liq. Cryst. (1)

J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[CrossRef]

Opt. Express (7)

K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express 15(26), 18351–18356 (2007).
[CrossRef] [PubMed]

Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008).
[CrossRef] [PubMed]

A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
[CrossRef] [PubMed]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004).
[CrossRef] [PubMed]

A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

Other (4)

W. C. Chuang, J. S. Lin, K. Y. Lee, and W. Y. Lee, “Polymer waveguide switch using liquid crystal overlayer,” SPIE‘s International Symposium on Opto-Electrics and Micro-Photonics, 1998.

V. G. Chigrinov, “Liquid crystal devices for photonics applications,” Proc. SPIE 6781, 67811M1–12 (2007)

A. Diaz, S. Kubo, D. H. Kwon, J. Park, D. Werner, T. Mallouk, and I. C. Khoo, “Nonlinear liquid crystal Na no-metamaterials” IEEE/LEOS Winter Topical Meeting Series, 2008, 94–95(2008)

I. C. Khoo, Liquid Crystal (John Wiley & Sons, 2007), Chap.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microscopic images of damaged channel waveguide during the preparation of the alignment layer by mechanical scratching on strip or rib waveguide.

Fig. 2
Fig. 2

Proposed VOA device configuration. (a) Device structure; (b) Cross-sectional dimension operated in single-mode region 1550 nm wavelength.

Fig. 3
Fig. 3

Index ellipsoid for a plane polarized optical wave in a uniaxial LC.

Fig. 4
Fig. 4

Effect of applied E-field to LC molecules direction. (a) LC molecules align to the light propagating direction (without E-field) and (b) LC molecules align to the applied E-field.

Fig. 5
Fig. 5

Intensity profiles obtained from BPM simulation at each cross section for different LC cladding index, (a) ncl = 1.51, (b) ncl = 1.52, (c) ncl = 1.53, (d) ncl = 1.54.

Fig. 6
Fig. 6

Experimental set up for measuring the attenuation characteristics.

Fig. 7
Fig. 7

Normalized Output Power of the VOA versus applied peak voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ne(θ)=none(ne2cos2(θ)+no2sin2(θ))
VVC=2π0θdθ(sin2(θm)sin2(θ))

Metrics