Abstract

We show that the direct modulation bandwidth of nano-cavity light emitting devices (nLEDs) can greatly exceed that of any laser. By performing a detailed analysis, we show that the modulation bandwidth can be increased by the Purcell effect, but that this enhancement occurs only when the device is biased below the lasing threshold. The maximum bandwidth is shown to be inversely proportional to the square root of the modal volume, with sub-wavelength cavities necessary to exceed conventional laser speeds.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
    [CrossRef]
  2. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  3. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
    [CrossRef]
  4. T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
    [CrossRef]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  6. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
    [CrossRef] [PubMed]
  7. S.-W. Chang, C.-Y. A. Ni, and S.-L. Chuang, "Theory for bowtie plasmonic nanolasers," Opt. Express 16, 10580-10595 (2008).
    [CrossRef] [PubMed]
  8. E. Feigenbaum and M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607-2612 (2007).
    [CrossRef] [PubMed]
  9. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
    [CrossRef]
  10. H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401-097404 (2006).
    [CrossRef] [PubMed]
  11. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
    [CrossRef]
  12. E. Yablonovitch, (manuscript in progress).
  13. J. M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999).
    [CrossRef]
  14. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., New York, 1995), p. 143.
  15. G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 27, 2386-2396 (1991).
    [CrossRef]
  16. E. Yablonovitch, "Light Emission in Photonic Crystal Micro-Cavities," in Confined Electrons and Photons: New Physics and Applications, E. Burstein and C. Weisbuch, eds. (Plenum Press, New York, 1994), pp. 635-646.
  17. M. Yamada and H. I. a. H. Nagato, "Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser," Jpn. J. Appl. Phys. 19, 135-142 (1980).
    [CrossRef]
  18. M. Asada, "Intraband relaxation time in quantum-well lasers," IEEE J. Quantum Electron. 25, 2019-2026 (1989).
    [CrossRef]
  19. A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436-085439 (2007).
    [CrossRef]
  20. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
    [CrossRef]
  21. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
    [CrossRef]
  22. H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
    [CrossRef]
  23. H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
    [CrossRef]
  24. Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
    [CrossRef]
  25. J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
    [CrossRef]
  26. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
    [CrossRef]
  27. S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
    [CrossRef]
  28. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
    [CrossRef]
  29. J.-P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998), pp. 350-357.

2008 (2)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
[CrossRef]

S.-W. Chang, C.-Y. A. Ni, and S.-L. Chuang, "Theory for bowtie plasmonic nanolasers," Opt. Express 16, 10580-10595 (2008).
[CrossRef] [PubMed]

2007 (6)

E. Feigenbaum and M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607-2612 (2007).
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
[CrossRef] [PubMed]

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436-085439 (2007).
[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

2006 (2)

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401-097404 (2006).
[CrossRef] [PubMed]

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

2005 (1)

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

2000 (1)

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

1999 (2)

J. M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1998 (1)

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

1997 (2)

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

1996 (1)

J.-P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

1991 (1)

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 27, 2386-2396 (1991).
[CrossRef]

1990 (1)

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

1989 (2)

M. Asada, "Intraband relaxation time in quantum-well lasers," IEEE J. Quantum Electron. 25, 2019-2026 (1989).
[CrossRef]

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

1987 (1)

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

1985 (1)

R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
[CrossRef]

1980 (1)

M. Yamada and H. I. a. H. Nagato, "Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser," Jpn. J. Appl. Phys. 19, 135-142 (1980).
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Altug, H.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Anderson, E.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Arakawa, Y.

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

Asada, M.

M. Asada, "Intraband relaxation time in quantum-well lasers," IEEE J. Quantum Electron. 25, 2019-2026 (1989).
[CrossRef]

Asano, K.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

Baba, T.

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
[CrossRef] [PubMed]

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

Backer, S. A.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Berenger, J.-P.

J.-P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

Björk, G.

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 27, 2386-2396 (1991).
[CrossRef]

Bokor, J.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Boroditsky, M.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

Bowers, J. E.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Brorson, S. D.

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Chang, S.-W.

Chuang, S.-L.

Coccioli, R.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

Coldren, L. A.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Conway, J. A.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Corzine, S. W.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

De Vries, T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

De Waardt, H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Eijkemans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Englund, D.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
[CrossRef]

Feigenbaum, E.

Frechet, J. M. J.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Fresco, Z. M.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Fujita, P.

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Gayral, B.

Geels, R. S.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Geluk, E. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Gérard, J. M.

Hill, M. T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Hisamoto, D.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Hong, T.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

Hu, C.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Karin, J. R.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Kedzierski, J.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Kihara, M.

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, K. W.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

King, T.-J.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Kita, S.

Kuo, C.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401-097404 (2006).
[CrossRef] [PubMed]

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Lee, H.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, W.-C.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Liu, V.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

Melcer, L. G.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401-097404 (2006).
[CrossRef] [PubMed]

Morton, P. A.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Nagarajan, R.

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Nagato, H. I. a. H.

M. Yamada and H. I. a. H. Nagato, "Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser," Jpn. J. Appl. Phys. 19, 135-142 (1980).
[CrossRef]

Ni, C.-Y. A.

Nishioka, M.

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Nozaki, K.

O'Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Orenstein, M.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
[CrossRef]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
[CrossRef]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

Sakai, A.

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Sakaki, H.

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

Sarychev, A. K.

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436-085439 (2007).
[CrossRef]

Scherer, A.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Smalbrugge, B.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Sogawa, T.

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

Suez, I.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Takeuchi, H.

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

Tanaka, M.

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

Tartakovsky, G.

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436-085439 (2007).
[CrossRef]

Tucker, R. S.

R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Vahala, K.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

Van Otten, F. W. M.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Van Veldhoven, P. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Vedantam, S.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Watanabe, R.

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Yablonovitch, E.

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

Yamada, M.

M. Yamada and H. I. a. H. Nagato, "Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser," Jpn. J. Appl. Phys. 19, 135-142 (1980).
[CrossRef]

Yamamoto, Y.

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 27, 2386-2396 (1991).
[CrossRef]

Yang, L.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yokoyama, H.

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Zhang, Z.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
[CrossRef]

Zhu, Y.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Appl. Phys. Lett. 51, 1295-1297 (1987).
[CrossRef]

J. R. Karin, L. G. Melcer, R. Nagarajan, J. E. Bowers, S. W. Corzine, P. A. Morton, R. S. Geels, and L. A. Coldren, "Generation of picosecond pulses with a gain-switched GaAs surface-emitting laser," Appl. Phys. Lett. 57, 963-965 (1990).
[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

IEE Proceedings (1)

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings -  145, 391-397 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 27, 2386-2396 (1991).
[CrossRef]

M. Asada, "Intraband relaxation time in quantum-well lasers," IEEE J. Quantum Electron. 25, 2019-2026 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron. Dev. 47, 2320-2325 (2000).
[CrossRef]

J. Appl. Phys. (2)

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

J. Comput. Phys. (1)

J.-P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

J. Lightwave Technol. (2)

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures (1)

S. A. Backer, I. Suez, Z. M. Fresco, J. M. J. Frechet, J. A. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Evaluation of new materials for plasmonic imaging lithography at 476 nm using near field scanning optical microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 1336-1339 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Yamada and H. I. a. H. Nagato, "Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser," Jpn. J. Appl. Phys. 19, 135-142 (1980).
[CrossRef]

Nat. Photon. (2)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nat. Photon. 2, 351-354 (2008).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photon. 1, 589-594 (2007).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436-085439 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401-097404 (2006).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (4)

E. Yablonovitch, (manuscript in progress).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., New York, 1995), p. 143.

E. Yablonovitch, "Light Emission in Photonic Crystal Micro-Cavities," in Confined Electrons and Photons: New Physics and Applications, E. Burstein and C. Weisbuch, eds. (Plenum Press, New York, 1994), pp. 635-646.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998), pp. 350-357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Conceptual diagram of different optical emitters: (a) LED (b) laser (c) cavity-enhanced LED.

Fig. 2.
Fig. 2.

(a) Contour plot of optimal 3-dB bandwidth for various nLED cavities with different modal volumes and quality factors. Bandwidth enhancement is found for small modal volumes, where there is a high Purcell enhancement. The dotted line (Qopt ) separates devices dominated by strong (above dotted line) and weak (below dotted line) coupling regimes. The strong-coupling regime is shaded, as it demonstrates richer dynamics and cannot be simply described by bandwidth. (b) Optimum 3-dB bandwidth and Q versus cavity volume.

Fig. 3.
Fig. 3.

(a) Normalized frequency response as a function of different pump currents for a Purcell-enhanced nanocavity light emitter with Q = 400 and Vn = 0.2. The largest 3-dB bandwidth (red circle) occurs below threshold and is f 3dB,max ≈ 200 GHz. When biased above threshold, the bandwidth decreases to 6 GHz. (b) Spontaneous emission (SpE) and stimulated emission (StE) rates versus pump current (normalized to J 1). For currents below the dotted line, the SpE rate is greater than the StE rate. This is reversed above J 1. (c) Resonance frequency (fR ) and (d) damping rate (γ) versus current. In (c) and (d), the contributions from SpE and StE are separately shown using a “Sp” and “St” subscript, respectively. (e) 3-dB bandwidth (f 3dB) versus current. When StE dominates, the bandwidth drops due to increased damping from gain compression. (f) Contour plot of maximum 3-dB bandwidth for nanocavity-emitters (including both lasers and LEDs) with different modal volumes and quality factors. The dashed contour separates the devices where the maximum bandwidth is found below or above J 1, labeled “LED” and “Conventional Lasers”, respectively. The strong-coupling regime is similarly labeled with a dotted line as in Fig. 2. The “x” marks the example device in panel (a) through (e).

Fig. 4.
Fig. 4.

(a) Schematic of proposed nLED structure. P and N are the ends of a P-I-N diode, where the intrinsic region is covered by the passivation layer and silver. Front and side cross-sections of the electric field magnitude profile for (b) Vn = 0.007 and (c) Vn = 0.0015.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

F=6π2 QVn ,
dNdt=JGSNτsp0(1β)Nτsp0Nτnr
dSdt=[ΓG1τp]S+ΓNτsp0,
H(ω)ΔS(ω)ΔJ(ω)=Γτp1(1+γp)(1+γsp),
f3dB,max12π 1τp2+τsp2 .
Qopt=π2τsp0ω0Vn6,
f3dB,opt12π 3ω0π2τsp0Vn .
H(ω)=Γ(aS0+γsp)ωR2ω2+jγω.
ωR2=1τp(aS0+γsp)+ΓτΔN(apS0+γspN0S0)
γ=aS0(1+Γapa)+γsp+γpΓG,
f3dB=12π ωR212γ2+(ωR212γ2)2+ωR4.
G=g0ln(N+NsNtr+Ns),
aGN=11+εSg0N+NsandapGS=εG1+εS.
aGN=11+εSg0N+NsandapGS=εG1+εS.
η=1/τrad1/τrad+1/τloss ,
1Qtot=1Qrad+1Qloss.

Metrics