Abstract

Amplified spontaneous emission intensity and gain spectra in polarized light have been measured in a dye doped nematic liquid crystal for different orientation of its optical axis and pump intensity. A possibility for switching the gain of the liquid crystal by an external electric field is shown experimentally. The liquid crystal materials with field controlled gain can be used in microlasers and light micro-amplifiers in both planar and waveguiding geometry.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy

Brian G. Saar, Heung-Shik Park, X. Sunney Xie, and Oleg D. Lavrentovich
Opt. Express 15(21) 13585-13596 (2007)

Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids

Aliaksandr V. Kachynski, Andrey N. Kuzmin, Paras N. Prasad, and Ivan I. Smalyukh
Opt. Express 16(14) 10617-10632 (2008)

Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers

Hiroyuki Yoshida, Kenji Tagashira, Takayuki Kumagai, Akihiko Fujii, and Masanori Ozaki
Opt. Express 18(12) 12562-12568 (2010)

References

  • View by:
  • |
  • |
  • |

  1. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).
  2. V. I. Kopp, Z.-Q. Zhang, and A. Genack, “Lasing in chiral photonic structures.” Progr. Quantum. Electron. 27, 369–416 (2003).
    [Crossref]
  3. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric network.” Phys. Rev. Lett. 90, 083902-1–083902-4 (2003).
    [Crossref]
  4. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
    [Crossref]
  5. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
    [Crossref]
  6. G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
    [Crossref] [PubMed]
  7. T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
    [Crossref]
  8. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
    [Crossref]
  9. L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
    [Crossref]
  10. L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
    [Crossref]
  11. N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).
  12. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, UK, 1993).
  13. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
    [Crossref]
  14. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
    [Crossref]
  15. R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
    [Crossref]
  16. C. V. Shank, A. M. Dienes, and W. T. Silfvast. “Single pass gain of exiplex 4-MU and Rhodamine 6G dye lasers,” Appl. Phys. Lett. 17, 307–309 (1970).
    [Crossref]
  17. C. A. Zannoni, “Theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813 (1979).
    [Crossref]
  18. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer -Verlag, New York, 1994).
    [Crossref]
  19. C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649 (1975).
    [Crossref]

2007 (3)

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
[Crossref]

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

2006 (1)

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

2005 (1)

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

2004 (1)

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

2003 (5)

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[Crossref]

V. I. Kopp, Z.-Q. Zhang, and A. Genack, “Lasing in chiral photonic structures.” Progr. Quantum. Electron. 27, 369–416 (2003).
[Crossref]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric network.” Phys. Rev. Lett. 90, 083902-1–083902-4 (2003).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

2002 (1)

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
[Crossref]

1994 (1)

M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
[Crossref]

1980 (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

1979 (1)

C. A. Zannoni, “Theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813 (1979).
[Crossref]

1975 (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649 (1975).
[Crossref]

1970 (1)

C. V. Shank, A. M. Dienes, and W. T. Silfvast. “Single pass gain of exiplex 4-MU and Rhodamine 6G dye lasers,” Appl. Phys. Lett. 17, 307–309 (1970).
[Crossref]

Balachandran, R. M.

M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
[Crossref]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Barna, V.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Barnik, M. I.

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

Bartolino, R.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Blinov, L. M.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
[Crossref]

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer -Verlag, New York, 1994).
[Crossref]

Cao, W.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
[Crossref]

Caputo, R.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Cheung, C.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer -Verlag, New York, 1994).
[Crossref]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Cipparrone, G.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

de Gennes, P.G.

P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, UK, 1993).

De Luca, A.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Dienes, A. M.

C. V. Shank, A. M. Dienes, and W. T. Silfvast. “Single pass gain of exiplex 4-MU and Rhodamine 6G dye lasers,” Appl. Phys. Lett. 17, 307–309 (1970).
[Crossref]

Ferjani, S.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric network.” Phys. Rev. Lett. 90, 083902-1–083902-4 (2003).
[Crossref]

Genack, A.

V. I. Kopp, Z.-Q. Zhang, and A. Genack, “Lasing in chiral photonic structures.” Progr. Quantum. Electron. 27, 369–416 (2003).
[Crossref]

Gomes, A. S. L.

M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
[Crossref]

Il’chishin, I. P.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Kopp, V. I.

V. I. Kopp, Z.-Q. Zhang, and A. Genack, “Lasing in chiral photonic structures.” Progr. Quantum. Electron. 27, 369–416 (2003).
[Crossref]

Lawandy, M.

M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
[Crossref]

Lazarev, V. V.

L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
[Crossref]

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[Crossref]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[Crossref]

Mazzulla, A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Mujumdar, S.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

Muñoz, A.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
[Crossref]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Ozaki, M.

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[Crossref]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[Crossref]

Pagliusi, P.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

Palffy-Muhoray, P.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
[Crossref]

Palto, S. P.

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Price, G.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Prost, J.

P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, UK, 1993).

Sapienza, R.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

Sauvain, E.

M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
[Crossref]

Scaramuzza, N.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric network.” Phys. Rev. Lett. 90, 083902-1–083902-4 (2003).
[Crossref]

Shank, C. V.

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649 (1975).
[Crossref]

C. V. Shank, A. M. Dienes, and W. T. Silfvast. “Single pass gain of exiplex 4-MU and Rhodamine 6G dye lasers,” Appl. Phys. Lett. 17, 307–309 (1970).
[Crossref]

Shpak, M. T.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Shtykov, N. M.

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

Silfvast, W. T.

C. V. Shank, A. M. Dienes, and W. T. Silfvast. “Single pass gain of exiplex 4-MU and Rhodamine 6G dye lasers,” Appl. Phys. Lett. 17, 307–309 (1970).
[Crossref]

Stille, W.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric network.” Phys. Rev. Lett. 90, 083902-1–083902-4 (2003).
[Crossref]

Strangi, G.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Strangi, P.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

Taheri, B.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
[Crossref]

Tikhonov, E. A.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Tishchenko, V. G.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Umanskii, B. A.

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
[Crossref]

Umeton, C.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Versace, C.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

Wiersma, D.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

Yodh, A. G.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[Crossref]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[Crossref]

Zannoni, C. A.

C. A. Zannoni, “Theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813 (1979).
[Crossref]

Zhang, Z.-Q.

V. I. Kopp, Z.-Q. Zhang, and A. Genack, “Lasing in chiral photonic structures.” Progr. Quantum. Electron. 27, 369–416 (2003).
[Crossref]

Appl. Phys. Lett. (7)

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[Crossref]

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103–131105 (2007).
[Crossref]

L. M. Blinov, G. Cipparrone, V. V. Lazarev, and B. A. Umanskii, “Planar amplifier for a microlaser on a cholesteric liquid crystal,” Appl. Phys. Lett. 91, 061102 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and P. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109–121111 (2006).
[Crossref]

C. V. Shank, A. M. Dienes, and W. T. Silfvast. “Single pass gain of exiplex 4-MU and Rhodamine 6G dye lasers,” Appl. Phys. Lett. 17, 307–309 (1970).
[Crossref]

JETP Lett. (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Mol. Phys. (1)

C. A. Zannoni, “Theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813 (1979).
[Crossref]

Nat. Maters. (1)

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three dimensional photonic crystal of the liquid crystal blue phase.” Nat. Maters. 1, 111–113 (2002).
[Crossref]

Nature (1)

M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media, Nature 368, 436–437 (1994).
[Crossref]

Phys. Rev. Lett. (3)

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903-1–033903-4 (2004).
[Crossref]

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903–063906 (2005).
[Crossref] [PubMed]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric network.” Phys. Rev. Lett. 90, 083902-1–083902-4 (2003).
[Crossref]

Pis’ma Zh. Eksp. Teor. Fiz. (1)

N. M. Shtykov, M. I. Barnik, L. M. Blinov, B. A. Umanskii, and S. P. Palto, “Amplification of emission of a liquid crystal microlaser using uniform liquid crystal layer,” Pis’ma Zh. Eksp. Teor. Fiz. 85, 734–737 (2007) (in Russ.).

Progr. Quantum. Electron. (1)

V. I. Kopp, Z.-Q. Zhang, and A. Genack, “Lasing in chiral photonic structures.” Progr. Quantum. Electron. 27, 369–416 (2003).
[Crossref]

Rev. Mod. Phys. (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649 (1975).
[Crossref]

Other (2)

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer -Verlag, New York, 1994).
[Crossref]

P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, UK, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spectra of absorption coefficients of the mixture E7/DCM(0.5%). The polarization of the spectrometer beam is either parallel (k e) or perpendicular (k o) to the director L . In the Inset, the long wavelength edges of the same spectra are magnified and the arrow shows the position of the ASE intensity maximum.

Fig. 2.
Fig. 2.

Geometries of the ASE intensity and gain measurements (top view on the planar nematic cell). Illuminated stripe IS has either full length l or a half of the full length ½.

Fig. 3.
Fig. 3.

The intensity and gain spectra in geometry of Fig. 2(a) (plots a and b) and geometry of Fig. 2(b) (plots c and d). a, c: The polarization spectra of ASE intensity with light electric vectors e y and e z; pump pulse energy W p=5.9mJ/pulse. b, d: Gain spectra at different pump pulse energy (shown at the curves). Solid and dashed lines correspond to e y and e z electric vectors of ASE, respectively; nematic mixture E7/DCM(0.5%).

Fig. 4.
Fig. 4.

The voltage dependence of ASE intensity (a) and gain spectra (b). The ASE polarization selected by analyzer is e y. Upon application of the voltage, the director rotates from L y direction (U=0V, solid lines) to L z direction (U=7V, dashed lines). Nematic mixture E7/DCM(0.16%), pump pulse energy W p=3.8mJ/pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g ( λ ) = 2 l ln ( I l ( λ ) I l 2 ( λ ) 1 ) .
r = ( I y I z ) ( I y + 2 I z ) ,

Metrics