Abstract

In this communication, the sub-micron size polycrystalline silicon (poly-Si) single mode waveguides are fabricated and integrated with SiON waveguide coupler by deep UV lithography. The propagation loss of poly-Si waveguide and coupling loss with optical flat polarization-maintaining fiber (PMF) are measured. For whole C-band (i.e., λ~1520-1565nm), the propagation loss of TE mode is measured to ~6.45±0.3dB/cm. The coupling loss with optical flat PMF is ~3.4dB/facet for TE mode. To the best of our knowledge, the propagation loss is among the best reported results. This communication discusses the factors reducing the propagation loss, especially the effect of the refractive index contrast. Compared to the SiO2 cladding, poly-Si waveguide with SiON cladding exhibits lower propagation loss.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for =1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986).
    [CrossRef]
  2. P. Kyle, S. Bradley, and L. Michal, "Polysilicon Photonic Resonators for Large-Scale 3D Integration of Optical Networks," Opt. Express 15, 17283-17290 (2007).
    [CrossRef]
  3. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High Speed Silicon Mach-Zehnder Modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-Speed Optical Modulation based on Carrier Depletion in a Silicon Waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  6. P. T. Liu and H. H. Wu, "High-Performance Polycrystalline-Silicon TFT by Heat-Retaining enhanced Lateral Crystallization," IEEE Electron Device Lett. 28, 722-724 (2007).
    [CrossRef]
  7. S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).
  8. K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005).
    [CrossRef]
  9. A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005).
    [CrossRef]
  10. L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007).
    [CrossRef]
  11. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal, single, and multiple slot waveguides optical transmission at λ = 1550 nm," Opt. Express 15, 17967-17972 (2007).
    [CrossRef] [PubMed]
  12. M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).
  13. F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
    [CrossRef]
  14. W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983).
    [CrossRef]
  15. R. E. Jones, Jr. and S. P. Wesolowski, "Electrical, Thermoelectric, and Optical properties of strongly degenerate polycrystalline silicon films," J. Appl. Phys. 56, 1702-1706 (1984).
  16. J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
    [CrossRef]
  17. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
    [CrossRef]
  18. L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
    [CrossRef]
  19. F. P. Payne and J. P. R. Lacey, "A Theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron 26, 977-986 (1994).
    [CrossRef]

2007 (7)

P. T. Liu and H. H. Wu, "High-Performance Polycrystalline-Silicon TFT by Heat-Retaining enhanced Lateral Crystallization," IEEE Electron Device Lett. 28, 722-724 (2007).
[CrossRef]

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007).
[CrossRef]

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-Speed Optical Modulation based on Carrier Depletion in a Silicon Waveguide," Opt. Express 15, 660-668 (2007).
[CrossRef] [PubMed]

P. Kyle, S. Bradley, and L. Michal, "Polysilicon Photonic Resonators for Large-Scale 3D Integration of Optical Networks," Opt. Express 15, 17283-17290 (2007).
[CrossRef]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal, single, and multiple slot waveguides optical transmission at λ = 1550 nm," Opt. Express 15, 17967-17972 (2007).
[CrossRef] [PubMed]

2005 (3)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High Speed Silicon Mach-Zehnder Modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005).
[CrossRef]

A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).

2000 (1)

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

1996 (2)

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

1994 (1)

F. P. Payne and J. P. R. Lacey, "A Theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron 26, 977-986 (1994).
[CrossRef]

1986 (1)

R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for =1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

1984 (1)

R. E. Jones, Jr. and S. P. Wesolowski, "Electrical, Thermoelectric, and Optical properties of strongly degenerate polycrystalline silicon films," J. Appl. Phys. 56, 1702-1706 (1984).

1983 (1)

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983).
[CrossRef]

Agarwal, A. M.

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

Akira, I.

M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).

Atsushi, M.

M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).

Biegelsen, D. K.

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983).
[CrossRef]

Black, M. R.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
[CrossRef]

Bradley, S.

Chang, T. C.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Chen, S. C.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Chetrit, Y.

Chin, J. Y.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Della, C.

L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007).
[CrossRef]

Dong, P.

Duan, X. M.

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

Feng, L. W.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Feng, N. N.

Foresi, J. S.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
[CrossRef]

Franck, T.

Han, M. K.

K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005).
[CrossRef]

Harke, A.

A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Hideki, M.

M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).

Hodge, D.

Hong, C. Y.

Iodice, M.

L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007).
[CrossRef]

Izhaky, N.

Jackson, W. B.

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983).
[CrossRef]

Johnson, N. M.

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Jones, R. E.

R. E. Jones, Jr. and S. P. Wesolowski, "Electrical, Thermoelectric, and Optical properties of strongly degenerate polycrystalline silicon films," J. Appl. Phys. 56, 1702-1706 (1984).

Keil, U. D.

Kimerling, L.

Kimerling, L. C.

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
[CrossRef]

Krause, M.

A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Kyle, P.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, "A Theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron 26, 977-986 (1994).
[CrossRef]

Lee, J. H.

K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005).
[CrossRef]

Lee, K. K.

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-Speed Optical Modulation based on Carrier Depletion in a Silicon Waveguide," Opt. Express 15, 660-668 (2007).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High Speed Silicon Mach-Zehnder Modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

Lien, C. H.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Lim, D. R.

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

Lipson, M.

Liu, A.

Liu, P. T.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

P. T. Liu and H. H. Wu, "High-Performance Polycrystalline-Silicon TFT by Heat-Retaining enhanced Lateral Crystallization," IEEE Electron Device Lett. 28, 722-724 (2007).
[CrossRef]

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for =1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Michal, L.

Michel, J.

Moon, K. C.

K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005).
[CrossRef]

Morse, M.

Mueller, J.

A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-Speed Optical Modulation based on Carrier Depletion in a Silicon Waveguide," Opt. Express 15, 660-668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, "A Theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron 26, 977-986 (1994).
[CrossRef]

Rubin, D.

Rui, M.

M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High Speed Silicon Mach-Zehnder Modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Sirleto, L.

L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007).
[CrossRef]

Soref, R. A.

R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for =1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Sun, R.

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Wesolowski, S. P.

R. E. Jones, Jr. and S. P. Wesolowski, "Electrical, Thermoelectric, and Optical properties of strongly degenerate polycrystalline silicon films," J. Appl. Phys. 56, 1702-1706 (1984).

Wu, H. H.

P. T. Liu and H. H. Wu, "High-Performance Polycrystalline-Silicon TFT by Heat-Retaining enhanced Lateral Crystallization," IEEE Electron Device Lett. 28, 722-724 (2007).
[CrossRef]

Wu, Y. C.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Yeh, P. H.

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

Appl. Phys. Lett. (3)

S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, and C. H. Lien, "Nonvolatile Si/SiO2/SiN/SiO2/Si type Polycrystalline Silicon Thin-Film-Transistor Memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett. 91, 1903103 (2007).

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, "Losses in polycrystalline silicon waveguides," Appl. Phys. Lett. 68, 2052-2054 (1996).
[CrossRef]

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, "Density of gap states of silicon grain boundaries determined by optical absorption," Appl. Phys. Lett. 43, 195-197 (1983).
[CrossRef]

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, "Low-loss single mode Amorphous Silicon Waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

IEEE Electron Device Lett. (1)

P. T. Liu and H. H. Wu, "High-Performance Polycrystalline-Silicon TFT by Heat-Retaining enhanced Lateral Crystallization," IEEE Electron Device Lett. 28, 722-724 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for =1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

IEEE Trans. Electron Devices (1)

K. C. Moon, J. H. Lee and M. K. Han, "The study of hot-carrier stress on Poly-Si TFT employing C-V measurement," IEEE Trans. Electron Devices 52, 512-517 (2005).
[CrossRef]

J. Appl. Phys. (2)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. M. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996).
[CrossRef]

R. E. Jones, Jr. and S. P. Wesolowski, "Electrical, Thermoelectric, and Optical properties of strongly degenerate polycrystalline silicon films," J. Appl. Phys. 56, 1702-1706 (1984).

J. Electron Mater. (1)

L. Liao, D. R. Lim, A. M. Agarwal, X. M. Duan, K. K. Lee, and L. C. Kimerling "Optical transmission losses in polycrystalline silicon strip waveguide: effects of waveguide dimensions, thermal treatment, hydrogen passivation and wavelength," J. Electron Mater. 29, 1380-1386 (2000).
[CrossRef]

J. J. Appl. Phys. (1)

M. Rui, I. Akira, M. Atsushi, and M. Hideki, "Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing," J. J. Appl. Phys. 41, 501-506 (2002).

Nat. Photonics (1)

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A High-Speed Silicon Optical Modulator based on a Metal-Oxide-Semiconductor Capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lasers Eng. (1)

L. Sirleto, M. Iodice, C. Della, et al., "Digital optical switch based on Amorphous Silicon Waveguide," Opt. Lasers Eng. 45, 458-462 (2007).
[CrossRef]

Opt. Quantum. Electron (1)

F. P. Payne and J. P. R. Lacey, "A Theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron 26, 977-986 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the SiON coupler.

Fig. 2.
Fig. 2.

AFM picture of the surface of deposited SiON layer before and after CMP process

Fig. 3.
Fig. 3.

SEM images of SiON coupler: (a) Tip structure of poly-Si waveguide; (b) 6µm×6µm SiON waveguide coupler; (c) SiON waveguide covered with 10µm SiO2 cladding layer.

Fig. 4.
Fig. 4.

Measured results of poly-Si waveguides with SiON coupler for TE mode in wafer C. (a) Measured spectrum of 700nm-wide and 250nm-high poly-Si waveguides in C-band wavelength; (b) Propagation and coupling loss of 250nm-high poly-Si waveguides for TE mode by cut-back technique at 1550nm; (c) Propagation and coupling loss of 250nm-high poly-Si waveguides for TM mode by cut-back technique at 1550nm.

Fig. 5.
Fig. 5.

Simulated scattering loss caused by surface roughness and refractive index contrast

Fig. 6.
Fig. 6.

Measured propagation loss of TE mode vs. annealing time and dimension of poly-Si waveguide

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = σ 2 2 k 0 d 4 n 1 g ( V ) f e ( x , y )

Metrics