Abstract

We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
    [CrossRef]
  2. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
    [CrossRef] [PubMed]
  3. M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
    [CrossRef] [PubMed]
  4. J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
    [CrossRef]
  5. M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
    [CrossRef]
  6. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
    [CrossRef]
  7. A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
    [CrossRef]
  8. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582, (2002).
    [CrossRef]
  9. C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
    [CrossRef]
  10. F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).
  11. F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).
  12. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
    [CrossRef]
  13. J. Z. Chen, Z. Liu, C. F. Gmachl, and D. L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005).
    [CrossRef] [PubMed]
  14. C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).
  15. B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
    [CrossRef] [PubMed]
  16. A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
    [CrossRef]
  17. S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
    [CrossRef]
  18. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
    [CrossRef]
  19. S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
    [CrossRef]
  20. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
    [CrossRef]
  21. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
    [CrossRef] [PubMed]
  22. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
    [CrossRef]
  23. P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007).
    [CrossRef]
  24. M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
    [CrossRef] [PubMed]
  25. R. Perahia, O. Painter, V. Moreau, and R. Colombelli, "Design of quantum cascade lasers for intra-cavity sensing in the mid-infrared," in preparation.
  26. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007).
    [CrossRef] [PubMed]
  27. V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
    [CrossRef]
  28. A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
    [CrossRef]

2007

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007).
[CrossRef]

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007).
[CrossRef] [PubMed]

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

2006

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

2005

2004

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

2003

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

2002

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
[CrossRef]

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582, (2002).
[CrossRef]

2001

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

2000

C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

1997

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

1994

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Aellen, T.

Allen, T.

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

Arnold, C. B.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

Baena, J. R.

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

Bahriz, M.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007).
[CrossRef] [PubMed]

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Bai, Y.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

Baillargeon, J.

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

Bakhirkin, Y.

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).

Beck, M.

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

Behroozi, P.

Belkin, M. A.

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Capasso, F.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
[CrossRef]

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Charlton, C.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).

Chen, J. Z.

Cho, A. Y.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
[CrossRef]

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

Cho, A.Y.

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Cockburn, J. W.

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Colombelli, R.

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007).
[CrossRef] [PubMed]

Corzine, S.

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Croitoru, N.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

Darvish, S. R.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

de Melas, F.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

De Wilde, Y.

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Diehl, L.

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Dirisu, A. O.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Domachuk, P.

P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007).
[CrossRef]

Doris, L.

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

Edelmann, A.

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

Eggleton, B. J.

P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007).
[CrossRef]

Evans, A.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

Faist, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Frank, J.

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).

Garcia, M.

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Gini, E.

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

Gmachl, C.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
[CrossRef]

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

Gmachl, C. F.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

J. Z. Chen, Z. Liu, C. F. Gmachl, and D. L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005).
[CrossRef] [PubMed]

Gornik, E.

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

Green, R. P.

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Haberkorn, M.

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

Hofler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Hofstetter, D.

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers, " Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

Howard, S. S.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Hutchinson, A.

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

Hutchinson, A.L.

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

Inberg, A.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

Katzir, A.

C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).

Kohler, R.

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

Kosterev, A. A.

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582, (2002).
[CrossRef]

Krysa, A. B.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007).
[CrossRef] [PubMed]

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Lee, B. G.

Lemoine, P-A.

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Lendl, B.

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

Liu, Z.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

J. Z. Chen, Z. Liu, C. F. Gmachl, and D. L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005).
[CrossRef] [PubMed]

Loncar, M.

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Mars, D.

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Melchior, H.

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

Mizaikoff, B.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).

Monat, P. C.

P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007).
[CrossRef]

Moreau, V.

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L.R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861 (2007).
[CrossRef] [PubMed]

Muller, A.

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Nguyen, J.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

Page, H.

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Painter, O.

Perahia, R.

Pflugl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

M. A. Belkin, M. Loncar, B. G. Lee, C. Pflugl, R. Audet, L. Diehl, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers," Opt. Express 15, 11262 (2007).
[CrossRef] [PubMed]

Razeghi, M.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).

Roberts, J. S.

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Ruzicka, C.

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

Schaden, S.

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

Schindler, R.

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

Schrenk, W.

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Z. Chen, Z. Liu, C. F. Gmachl, and D. L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005).
[CrossRef] [PubMed]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
[CrossRef]

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

Sivco, D.L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

Slivken, S.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

Smith, D. J.

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Song, S.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Strasser, G.

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

Tandon, A.

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Tittel, F. K.

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582, (2002).
[CrossRef]

Tredicucci, A.

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

Troccoli, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

Wilson, L. R.

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Wilson, L.R.

Wysocki, G.

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).

Yu, J. S.

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

Zhang, W.

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

Zhu, J.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

Anal. Chem

B. Lendl, J. Frank, R. Schindler, A. Muller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000).
[CrossRef] [PubMed]

Anal. Chem.

C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 72, 1645 (2000).

Appl

S. Schaden, M. Haberkorn, J. Frank, J. R. Baena, and B. Lendl, "Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers," Appl. Spec. 58, 667 (2004).
[CrossRef]

Appl. Phys. Lett.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

S. R. Darvish, W. Zhang, A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at 7.8 μm," Appl. Phys. Lett. 89, 251119 (2006).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, " Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003).
[CrossRef]

M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "Hightemperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vaporphase epitaxy, " Appl. Phys. Lett. 89, 81101 (2006).
[CrossRef]

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

V. Moreau, P-A. Lemoine, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

IEE Proc. Optoelectron.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with roomtemperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003).
[CrossRef]

IEEE Circuits and Devices

C. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. Hutchinson, D. L. Sivco, J. Baillargeon, and A. Y. Cho, "The Sense-Ability of Semiconductor Lasers," IEEE Circuits and Devices 16, 10 (2000).
[CrossRef]

IEEE J. Quantum Electron.

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582, (2002).
[CrossRef]

J. Chrom. A

A. Edelmann, C. Ruzicka, J. Frank, B. Lendl,W. Schrenk, E. Gornik, and G. Strasser, "Towards functional groupspecific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers," J. Chrom. A 934, 123 (2001).
[CrossRef]

J. Cryst. Growth

A. B. Krysa, J. S. Roberts, R. P. Green, L. R. Wilson, H. Page, M. Garcia, and J. W. Cockburn, "MOVPE-grown quantum cascade lasers operating at 9 μm wavelength," J. Cryst. Growth 272, 682 (2004).
[CrossRef]

Nature Photon.

P. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007).
[CrossRef]

Opt. Express

Phys. Today

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum Cascade Lasers," Phys. Today 55, 34 (2002).
[CrossRef]

Science

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,and A.Y. Cho, "Quantum cascade laser," Science 264, 553 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002).
[CrossRef] [PubMed]

The Review of Laser Engineering

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, "Recent Advances in Trace Gas Detection Using Quantum and Interband Cascade Lasers," The Review of Laser Engineering 34, 275 (2006).

Top. Appl. Phys.

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Top. Appl. Phys. 89, 445 (2003).

Other

R. Perahia, O. Painter, V. Moreau, and R. Colombelli, "Design of quantum cascade lasers for intra-cavity sensing in the mid-infrared," in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of surface sensing employing an air-guided QC laser. Left figure: 2D finite-element simulation of the laser mode (the magnitude of the electric field is shown) super-posed onto a schematic view of the device. Right figure: 1D section of the laser mode at the center of the ridge. The orange region is the air-cladding above the device where the evanescent field penetrates, making the device sensitive to an external perturbation.

Fig. 2.
Fig. 2.

Sketch of the experimental setup used for the measurements. The laser devices are soldered with indium on a copper block. This latter is then mounted onto a Peltier-Cooler. (a) Side view. (b) Top view. The emitted light is collected from the laser facet and fed into a FTIR spectrometer operated in rapid-scan mode, with a typical resolution of 0.125 cm-1. A liquid-nitrogen-cooled MCT detector was used.

Fig. 3.
Fig. 3.

(a) Laser tuning upon S1818 photoresist deposition on the device top surface. Black curve: emission spectrum of the laser device before resist deposition. Blue curve: emission spectrum with the resist deposited on the top surface. Red curve: emission spectrum with the resist deposited on half the top surface. Purple curve: calibrated absorption spectrum of Shipley photoresist S1818, obtained via FTIR spectroscopy. The lasers were typically operated with 50-ns-wide pulses at a repetition rate of 84 kHz. (b) Light-current-voltage (LIV) curve of the device without and with resist. The current threshold of the unperturbed device (black curve) is approximately 27% lower than the threshold when the resist is deposited on the surface (blue curve). When the resist is deposited on half the top surface (red curve) the threshold approximately 13% higher than the unperturbed case. The lasers were operated with 50-ns-wide pulses at 84 kHz repetition rate.

Fig. 4.
Fig. 4.

(a) Laser tuning of a 41-µm-wide air-guided QC laser upon ethanol (blue spectrum) and IPA (red spectrum) deposition. The black spectrum represents the unperturbed laser emission. The red (blue) curves represent the measured absorption of IPA and ethanol, respectively. The measurements were taken at 18 C degrees. The lasers were operated at 84 kHz, with 50-ns-wide pulses. The signal was fed into an FTIR spectrometer and detected with an MCT detector. (b) Laser tuning with a 50%-50% mixed solution of IPA and ethanol (green spectrum). The green curve represents the measured absorption of the solution. Inset: frequency shift of the Fabry-Perot mode spacing upon fluid deposition. Black curve: without fluid. Green curve: with fluid.

Fig. 5.
Fig. 5.

(a) Absorption model (b) Experimental (blue circle) vs. predicted (black circle) lasing frequencies for IPA as a function of initial frequency. Inset shows lasing condition for three characteristic initial frequencies

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α total ( v ) = α m + α wg ( v 0 ) ( v 0 v ) 2 + n g n 0 Γ e α a ( v ) ,

Metrics