Abstract

Coherent optical OFDM (CO-OFDM) has emerged as an attractive modulation format for the forthcoming 100 Gb/s Ethernet. However, even the spectral-efficient implementation of CO-OFDM requires digital-to-analog converters (DAC) and analog-to-digital converters (ADC) to operate at the bandwidth which may not be available today or may not be cost-effective. In order to resolve the electronic bandwidth bottleneck associated with DAC/ADC devices, we propose and elucidate the principle of orthogonal-band-multiplexed OFDM (OBM-OFDM) to subdivide the entire OFDM spectrum into multiple orthogonal bands. With this scheme, the DAC/ADCs do not need to operate at extremely high sampling rate. The corresponding mapping to the mixed-signal integrated circuit (IC) design is also revealed. Additionally, we show the proof-of-concept transmission experiment through optical realization of OBM-OFDM. To the best of our knowledge, we present the first experimental demonstration of 107 Gb/s QPSK-encoded CO-OFDM signal transmission over 1000 km standardsingle-mode-fiber (SSMF) without optical dispersion compensation and without Raman amplification. The demonstrated system employs 2×2 MIMO-OFDM signal processing and achieves high electrical spectral efficiency with direct-conversion at both transmitter and receiver.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
    [CrossRef]
  2. A. J. Lowery, L. Du, and J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," in Optical Fiber Commun. Conf., Paper PDP39, Anaheim, CA (2006).
  3. I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 14, 3767-3775 (2006).
    [CrossRef] [PubMed]
  4. W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
    [CrossRef]
  5. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, "20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation," in Optical Fiber Comm. Conf., Paper PDP15, Anaheim, CA (2007).
  6. W. Shieh, W. Chen, and R. S. Tucker, "Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems," Electron. Lett. 42, 996-997 (2006).
    [CrossRef]
  7. W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
    [CrossRef] [PubMed]
  8. N. Cvijetic, L. Xu, and T. Wang, "Adaptive PMD Compensation using OFDM in Long-Haul 10Gb/s DWDM Systems," in Optical Fiber Comm. Conf., Paper OTuA5, Anaheim, CA (2007).
  9. I. B. Djordjevic, "PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM," Opt. Express 15, 3692-3701 (2007).
    [CrossRef] [PubMed]
  10. W. Shieh, "Coherent optical MIMO-OFDM for optical fibre communication systems," workshop 5, European Conference on Optical Communication, Berlin, Germany (2007).
  11. S. L. Jansen, I. Morita and H. Tanaka, "16x52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing KDDI R&D Laboratories," in European Conference on Optical Communications, Paper PD1.3, Berlin, Germany (2007).
  12. M. Mayrock, and H. Haunstein, "PMD Tolerant Direct-Detection Optical OFDM System," in European Conference on Optical Communication, Paper 5.2.5., Berlin, Germany (2007).
  13. X. Yi, W. Shieh, and Y. Ma, "Phase Noise on Coherent Optical OFDM Systems with 16-QAM and 64-QAM beyond 10 Gb/s," in European Conference on Optical Communication, paper 5.2.3, Berlin, Germany (2007).
  14. F. Buchali and R. Dischler, "Optimized sensitivity direct detection O-OFDM with multi level subcarrier modulation," in Optical Fiber Communication Conf., Paper OMU5, San Diego, CA (2008).
  15. H. Sun, K. -T. Wu, and K. Roberts, "Real-time measurements of a 40 Gb/s coherent system," Opt. Express 16, 873-879 (2008).
    [CrossRef] [PubMed]
  16. P. J. Winzer, G. Raybon, and M. Duelk, "107-Gb/s optical ETDM transmitter for 100 G Ethernet transport," in the European Conference on Optical Communication, Paper Th4.1.1, Glasgow, Scotland (2005).
    [CrossRef]
  17. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E-D. Schmidt, T. Wuth, E. de Man, G. D. Khoe, and H. de Waardt, "10 x 111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation," in Optical Fiber Commun. Conf., Paper PDP22, Anaheim, CA (2007).
  18. C. Sethumadhavan, X. Liu, E. Burrows, and L. Buhl, "Hybrid 107-Gb/s Polarization-Multiplexed DQPSK and 42.7-Gb/s DQPSK Transmission at 1.4- bits/s/Hz Spectral Efficiency over 1280 km of SSMF and 4 Bandwidth-Managed ROADMs," in European Conference on Optical Communication, Paper PD 1.9, Berlin, Germany (2007).
  19. A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, "30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes," European Conference on Optical Communication, Paper PD 1.7, Berlin, Germany, 2007.
  20. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
    [CrossRef]
  21. A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
    [CrossRef]
  22. T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
    [CrossRef]
  23. G. Goldfarb, G. Li, and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
    [CrossRef]
  24. A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
    [CrossRef]
  25. W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
    [CrossRef] [PubMed]
  26. Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
    [CrossRef]
  27. Y. Wang, Z. Pan, C. Yu, T. Luo, A. Sahin, and A.E. Willner, "A multi-wavelength optical source based on supercontinuum generation using phase and intensity modulation at the line-spacing rate," in Europe Conference on Optical Communication, Paper Th3.2.4, Rimini, Italy (2003).
  28. W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, "Optical performance monitoring in coherent optical OFDM systems," Opt. Express 15, 350-356 (2007).
    [CrossRef] [PubMed]

2008

H. Sun, K. -T. Wu, and K. Roberts, "Real-time measurements of a 40 Gb/s coherent system," Opt. Express 16, 873-879 (2008).
[CrossRef] [PubMed]

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
[CrossRef] [PubMed]

2007

Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
[CrossRef]

W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, "Optical performance monitoring in coherent optical OFDM systems," Opt. Express 15, 350-356 (2007).
[CrossRef] [PubMed]

G. Goldfarb, G. Li, and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

I. B. Djordjevic, "PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM," Opt. Express 15, 3692-3701 (2007).
[CrossRef] [PubMed]

W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
[CrossRef]

2006

W. Shieh, W. Chen, and R. S. Tucker, "Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems," Electron. Lett. 42, 996-997 (2006).
[CrossRef]

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 14, 3767-3775 (2006).
[CrossRef] [PubMed]

2005

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

2004

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

2002

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Aiello, G. R.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

Allen, C. T.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Athaudage, C.

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

Balakrishnan, J.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

Bao, H.

Batra, A.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

Chen, W.

W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, "Optical performance monitoring in coherent optical OFDM systems," Opt. Express 15, 350-356 (2007).
[CrossRef] [PubMed]

W. Shieh, W. Chen, and R. S. Tucker, "Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems," Electron. Lett. 42, 996-997 (2006).
[CrossRef]

Dabak, A.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

Demarest, K. R.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Djordjevic, I. B.

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

Evans, R.

Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
[CrossRef]

Foerster, J. R.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

Goldfarb, G.

G. Goldfarb, G. Li, and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
[CrossRef]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

Huang, R.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Hui, R.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Kobayashi, T.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

Li, G.

G. Goldfarb, G. Li, and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
[CrossRef]

Ma, Y.

Miyamoto, Y.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

Pendock, G.

Richards, D.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Roberts, K.

Sano, A.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

Shieh, W.

W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
[CrossRef]

W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, "Optical performance monitoring in coherent optical OFDM systems," Opt. Express 15, 350-356 (2007).
[CrossRef] [PubMed]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
[CrossRef]

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

W. Shieh, W. Chen, and R. S. Tucker, "Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems," Electron. Lett. 42, 996-997 (2006).
[CrossRef]

Sun, H.

Takada, A.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

Takara, H.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

Tang, Y.

W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
[CrossRef]

Taylor, M. G.

G. Goldfarb, G. Li, and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
[CrossRef]

Tucker, R. S.

W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, "Optical performance monitoring in coherent optical OFDM systems," Opt. Express 15, 350-356 (2007).
[CrossRef] [PubMed]

W. Shieh, W. Chen, and R. S. Tucker, "Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems," Electron. Lett. 42, 996-997 (2006).
[CrossRef]

Vasic, B.

Wu, K. -T.

Yamada, E.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

Yi, X.

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
[CrossRef]

W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, "Optical performance monitoring in coherent optical OFDM systems," Opt. Express 15, 350-356 (2007).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
[CrossRef]

Zhu, B.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Electron. Lett

W. Shieh, W. Chen, and R. S. Tucker, "Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems," Electron. Lett. 42, 996-997 (2006).
[CrossRef]

Electron. Lett.

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

W. Shieh, X. Yi, and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
[CrossRef]

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett. 44, 225-226 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Goldfarb, G. Li, and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
[CrossRef]

Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," IEEE Photon. Technol. Lett. 19, 483-485 (2007).
[CrossRef]

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

IEEE Trans. Microwave Theory and Techniques

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory and Techniques 52, 2123-2138 (2004).
[CrossRef]

J. Lightwave Technology

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," IEEE/OSA J. Lightwave Technology  20, 417-427 (2002).
[CrossRef]

Opt. Express

Other

Y. Wang, Z. Pan, C. Yu, T. Luo, A. Sahin, and A.E. Willner, "A multi-wavelength optical source based on supercontinuum generation using phase and intensity modulation at the line-spacing rate," in Europe Conference on Optical Communication, Paper Th3.2.4, Rimini, Italy (2003).

W. Shieh, "Coherent optical MIMO-OFDM for optical fibre communication systems," workshop 5, European Conference on Optical Communication, Berlin, Germany (2007).

S. L. Jansen, I. Morita and H. Tanaka, "16x52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing KDDI R&D Laboratories," in European Conference on Optical Communications, Paper PD1.3, Berlin, Germany (2007).

M. Mayrock, and H. Haunstein, "PMD Tolerant Direct-Detection Optical OFDM System," in European Conference on Optical Communication, Paper 5.2.5., Berlin, Germany (2007).

X. Yi, W. Shieh, and Y. Ma, "Phase Noise on Coherent Optical OFDM Systems with 16-QAM and 64-QAM beyond 10 Gb/s," in European Conference on Optical Communication, paper 5.2.3, Berlin, Germany (2007).

F. Buchali and R. Dischler, "Optimized sensitivity direct detection O-OFDM with multi level subcarrier modulation," in Optical Fiber Communication Conf., Paper OMU5, San Diego, CA (2008).

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, "20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation," in Optical Fiber Comm. Conf., Paper PDP15, Anaheim, CA (2007).

A. J. Lowery, L. Du, and J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," in Optical Fiber Commun. Conf., Paper PDP39, Anaheim, CA (2006).

P. J. Winzer, G. Raybon, and M. Duelk, "107-Gb/s optical ETDM transmitter for 100 G Ethernet transport," in the European Conference on Optical Communication, Paper Th4.1.1, Glasgow, Scotland (2005).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E-D. Schmidt, T. Wuth, E. de Man, G. D. Khoe, and H. de Waardt, "10 x 111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation," in Optical Fiber Commun. Conf., Paper PDP22, Anaheim, CA (2007).

C. Sethumadhavan, X. Liu, E. Burrows, and L. Buhl, "Hybrid 107-Gb/s Polarization-Multiplexed DQPSK and 42.7-Gb/s DQPSK Transmission at 1.4- bits/s/Hz Spectral Efficiency over 1280 km of SSMF and 4 Bandwidth-Managed ROADMs," in European Conference on Optical Communication, Paper PD 1.9, Berlin, Germany (2007).

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, "30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes," European Conference on Optical Communication, Paper PD 1.7, Berlin, Germany, 2007.

N. Cvijetic, L. Xu, and T. Wang, "Adaptive PMD Compensation using OFDM in Long-Haul 10Gb/s DWDM Systems," in Optical Fiber Comm. Conf., Paper OTuA5, Anaheim, CA (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Conceptual diagram of orthogonal-band-multiplexed OFDM (OBM-OFDM). Anti-alias filters I and II correspond to two detection approaches illustrated in the text.

Fig. 2.
Fig. 2.

Schematic of OBM-OFDM implementation in mixed-signal circuits for (a) the transmitter, (b) the receiver, and (c) the IQ modulator/demodulator. Both the output from the transmitter in (a) and the input to the receiver in (b) are complex signals with real and imaginary components.

Fig.3.
Fig.3.

Experimental setup for 107 Gb/s CO-OFDM systems.

Fig.4.
Fig.4.

Optical Spectra for the 107 Gb/s signal using (a) a polarization diversity coherent receiver, and (b) using an optical spectrum analyzer. The resolution bandwidths in (a) and (b) are100 kHz, and 2.5 GHz (0.02 nm), respectively. The band numbers are also depicted next to the corresponding bands.

Fig.5.
Fig.5.

The electrical spectrum at the receiver after the 3.8 GHz anti-alias filter. Both negative and positive frequency components are shown because the coherent receiver is used.

Fig. 6.
Fig. 6.

BER sensitivity of 107 Gb/s CO-OFDM signal at the back-to-back and 1000-km transmission.

Fig. 7.
Fig. 7.

Q factor of 107 Gb/s CO-OFDM signal as a function of reach.

Tables (1)

Tables Icon

Table 1. BER distribution for OFDM sub-bands, when (a) OSNR of 17.5 dB at back-to-back, and (b) OSNR of 20.2 dB after 1000 km transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ f G = m Δ f
f l = l · Δ f b , l [ L , L ]

Metrics