Abstract

An efficient method that can be used to control the optical anisotropy of CdSe/ZnS quantum dots by coupling to the surface plasmon polariton resonance of a metal grating has been demonstrated. It is found that the unpolarized emission and Raman scattering signals arising from CdSe/ZnS quantum dots can be manipulated and exhibit a strong anisotropic behavior based upon our strategy. The optical anisotropy is interpreted in terms of the coupling between the directional surface plasmon of metal grating and the emitted light beam of quantum dots. Due to the importance of quantum dots in optoelectronic devices, our new approach should be useful for future application.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wu and P. Yang, "Germanium nanowire growth via Simple Vapor Transport," Chem. Mater. 12, 605-607 (2000).
    [CrossRef]
  2. A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279, 208-211 (1998).
    [CrossRef] [PubMed]
  3. B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000).
    [CrossRef]
  4. K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004).
    [CrossRef]
  5. J. T. Andrews and P. Sen, "Steady state optical gain in small semiconductor quantum dots," J. Appl. Phys. 91, 2827-2832 (2002).
    [CrossRef]
  6. L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
    [CrossRef]
  7. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
    [CrossRef] [PubMed]
  8. M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468-471 (1996).
    [CrossRef]
  9. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
    [CrossRef]
  10. J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
    [CrossRef]
  11. J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
    [CrossRef] [PubMed]
  12. H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
    [CrossRef] [PubMed]
  13. Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
    [CrossRef]
  14. V. M. Agranovich and D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
  15. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  16. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
    [CrossRef] [PubMed]
  18. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 331, 189-193 (2006).
    [CrossRef]
  19. A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
    [CrossRef]
  20. C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
    [CrossRef]
  21. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  22. A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004).
    [CrossRef]

2007

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

2006

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 331, 189-193 (2006).
[CrossRef]

2004

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004).
[CrossRef]

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

2002

J. T. Andrews and P. Sen, "Steady state optical gain in small semiconductor quantum dots," J. Appl. Phys. 91, 2827-2832 (2002).
[CrossRef]

2001

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

2000

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Y. Wu and P. Yang, "Germanium nanowire growth via Simple Vapor Transport," Chem. Mater. 12, 605-607 (2000).
[CrossRef]

B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000).
[CrossRef]

1998

A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279, 208-211 (1998).
[CrossRef] [PubMed]

1997

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

1996

M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468-471 (1996).
[CrossRef]

Andrews, J. T.

J. T. Andrews and P. Sen, "Steady state optical gain in small semiconductor quantum dots," J. Appl. Phys. 91, 2827-2832 (2002).
[CrossRef]

Asryana, L. V.

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

Bawendi, M. G.

B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Bellessa, J.

A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004).
[CrossRef]

Bimberg, D.

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

Brioude, A.

A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004).
[CrossRef]

Chang, P.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Chen, C.-Y.

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Cheng, C.-T.

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Cheng, Y.-M.

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Chou, P.-T.

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Chung, L. W. K.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Cui, D.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Cui, Y.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Duan, X.

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Fan, Z.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Gao, X.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Gerhold, M.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Grundmann, M.

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Gudiksen, M. K.

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468-471 (1996).
[CrossRef]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Hessman, D.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Hines, M. A.

M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468-471 (1996).
[CrossRef]

Im, H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Kagan, C. R.

B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000).
[CrossRef]

Kumar, N.

K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004).
[CrossRef]

Landin, L.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Ledentsov, N. N.

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

Lee, H. P.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Lesuffleur, A.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Levenson, R. M.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Lieber, C. M.

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279, 208-211 (1998).
[CrossRef] [PubMed]

Lin, C.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Lindquist, N. C.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Lippert, T. K.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Liu, J.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Lu, J. G.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Manzoor, K.

K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004).
[CrossRef]

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Morales, A. M.

A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279, 208-211 (1998).
[CrossRef] [PubMed]

Murray, B.

B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Nagel, M.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Nie, S.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Oh, S.-H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 331, 189-193 (2006).
[CrossRef]

Pellerin, K. M.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Penner, R. M.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Persson, A. I.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Pettersson, H.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Pu, S.-C.

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Rabaste, S.

A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004).
[CrossRef]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Samuelson, L.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Sen, P.

J. T. Andrews and P. Sen, "Steady state optical gain in small semiconductor quantum dots," J. Appl. Phys. 91, 2827-2832 (2002).
[CrossRef]

Stier, O.

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

Thio, T.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Trägardh, J.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Vadera, S. R.

K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004).
[CrossRef]

Walter, E. C.

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

Wang, A. Y.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Wang, J.

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu and P. Yang, "Germanium nanowire growth via Simple Vapor Transport," Chem. Mater. 12, 605-607 (2000).
[CrossRef]

Xu, J.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Yang, P.

Y. Wu and P. Yang, "Germanium nanowire growth via Simple Vapor Transport," Chem. Mater. 12, 605-607 (2000).
[CrossRef]

Yu, J.-K.

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Annu. Rev. Mater. Sci.

B. Murray, C. R. Kagan, and M. G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 30, 545-610 (2000).
[CrossRef]

Appl. Phys. Lett.

K. Manzoor, S. R. Vadera, and N. Kumar, "Multicolor electroluminescent devices using doped ZnS nanocrystals," Appl. Phys. Lett. 84, 284-286 (2004).
[CrossRef]

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, "Photoluminescence and polarized photodetection of single ZnO nanowires," Appl. Phys. Lett. 85, 6128-6130 (2004).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Chem. Mater.

Y. Wu and P. Yang, "Germanium nanowire growth via Simple Vapor Transport," Chem. Mater. 12, 605-607 (2000).
[CrossRef]

J. Appl. Phys.

J. T. Andrews and P. Sen, "Steady state optical gain in small semiconductor quantum dots," J. Appl. Phys. 91, 2827-2832 (2002).
[CrossRef]

L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, "Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser," J. Appl. Phys. 90, 1666-1668 (2001).
[CrossRef]

A. Brioude, J. Bellessa, and S. Rabaste,  et al. "Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films," J. Appl. Phys. 95, 2744-2748 (2004).
[CrossRef]

J. Phys. Chem.

M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468-471 (1996).
[CrossRef]

J. Phys. Chem. B

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

C.-Y. Chen, C.-T. Cheng, J.-K. Yu, S.-C. Pu, Y.-M. Cheng, and P.-T. Chou, "Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor," J. Phys. Chem. B 108, 10687-10691 (2004).
[CrossRef]

Nano Lett.

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, "Infrared Photodetectors in Heterostructure Nanowires," Nano Lett. 6, 229-232 (2006).
[CrossRef] [PubMed]

Nanotechnology

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
[CrossRef]

Nat. Biotechnol.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004).
[CrossRef] [PubMed]

Nature (London)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Science

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 331, 189-193 (2006).
[CrossRef]

A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279, 208-211 (1998).
[CrossRef] [PubMed]

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Other

V. M. Agranovich and D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The scanning electron microscope image of the gold grating.

Fig. 2.
Fig. 2.

(a). Photoluminescence spectra of CdSe/ZnS quantum dots deposited on gold film. (b) Photoluminescence spectra of CdSe/ZnS quantum dots deposited on the gold grating with a period of 500 nm, where Ip and Iv represent the polarization parallel and perpendicular to the axis of gold grating, respectively.

Fig. 3.
Fig. 3.

The fitting plot of polarization anisotropy with varied angles.

Fig. 4.
Fig. 4.

The dependence of the degree of polarization anisotropy of CdSe/ZnS quantum dots on the period of gold grating.

Fig. 5.
Fig. 5.

Dispersion relationship of the 500 nm gold grating calculated according to Eq. (1). The occurrence of surface plasmon resonance follows the calculated curves. When the emission wavelength 590 nm, the diffracted wave due to surface plasmon resonance occurs at an angle of 14° for the metal grating with 500 nm period as shown by the dashed line.

Fig. 6.
Fig. 6.

Angular distribution of the emission for CdSe/ZnS quantum dots deposited on 450 nm gold grating.

Fig. 7.
Fig. 7.

Anisotropy of Raman scattering spectra arising from CdSe/ZnS quantum dots deposited on 500 nm gold grating. 1LO and 2LO corresponding the Raman signals of one and two longitudinal optical phonon replica of CdSe.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k sin θ + n G = k sp ,

Metrics