Abstract

We propose two designs of effectively single mode porous polymer fibers for low-loss guiding of terahertz radiation. First, we present a fiber of several wavelengths in diameter containing an array of sub-wavelength holes separated by sub-wavelength material veins. Second, we detail a large diameter hollow core photonic bandgap Bragg fiber made of solid film layers suspended in air by a network of circular bridges. Numerical simulations of radiation, absorption and bending losses are presented; strategies for the experimental realization of both fibers are suggested. Emphasis is put on the optimization of the fiber geometries to increase the fraction of power guided in the air inside of the fiber, thereby alleviating the effects of material absorption and interaction with the environment. Total fiber loss of less than 10 dB/m, bending radii as tight as 3 cm, and fiber bandwidth of ~1 THz is predicted for the porous fibers with sub-wavelength holes. Performance of this fiber type is also compared to that of the equivalent sub-wavelength rod-in-the-air fiber with a conclusion that suggested porous fibers outperform considerably the rod-in-the-air fiber designs. For the porous Bragg fibers total loss of less than 5 dB/m, bending radii as tight as 12 cm, and fiber bandwidth of ~0.1 THz are predicted. Coupling to the surface states of a multilayer reflector facilitated by the material bridges is determined as primary mechanism responsible for the reduction of the bandwidth of a porous Bragg fiber. In all the simulations, polymer fiber material is assumed to be Teflon with bulk absorption loss of 130 dB/m.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006).
    [CrossRef] [PubMed]
  2. D. J. Cook, B. K. Decker, and M. G. Allen, "Quantitative THz Spectroscopy of Explosive Materials," OSA conf.: Optical Terahertz Science and Technology, PSI-SR-1196 (2005).
  3. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
    [CrossRef]
  4. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
    [CrossRef]
  5. W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
    [CrossRef]
  6. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, "Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits," Opt. Lett. 28, 2058-2060 (2003).
    [CrossRef] [PubMed]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  8. T. Lffler, T. Bauer, K. J. Siebert, H. G. Roskos, A. Fitzgerald, and S. Czasch, "Terahertz dark-field imaging of biomedical tissue," Opt. Express 9, 616-621 (2001).
    [CrossRef]
  9. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  10. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004).
    [CrossRef] [PubMed]
  11. C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, "Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency," J. Lightwave Technol. 25, 2456-2462 (2007).
    [CrossRef]
  12. C. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, "Flexible terahertz fiber optics with low bend-induced losses," J. Opt. Soc. Am. B 24, 1230-1235 (2007).
    [CrossRef]
  13. K. Wang, and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  14. Q. Cao, J. Jahns "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005).
    [CrossRef] [PubMed]
  15. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF cladding terahertz waveguide," J. Lightwave Technol. 23, 2469-2473 (2005).
    [CrossRef]
  16. M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  17. R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
    [CrossRef]
  18. F. Poli, M. Foroni, D. Giovanelli, A. Cucinotta, S. Selleri, J. B. Jensen, J. Laegsgaard, A. Bjarklev, G. Vienne, C. Jakobsen, and J. Broeng, "Silica bridge impact on hollow-core Bragg fiber transmission properties," Proceedings OFC/NFOEC, 1-3 (2007).
  19. H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
    [CrossRef]
  20. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
    [CrossRef]
  21. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  22. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
    [CrossRef]
  23. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
    [CrossRef] [PubMed]
  24. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett 92, 071101 (2008).
    [CrossRef]
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory Chapman Hall, New York, (1983).
  26. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004).
    [CrossRef] [PubMed]
  27. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
    [PubMed]
  28. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-Loss Asymptotically Single-Mode Propagation in Large Core OmniGuide Fibers," Opt. Express 9, 748 (2001).
    [CrossRef] [PubMed]
  29. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, "Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates," Opt. Express 10, 1227-1243 (2002).
    [PubMed]

2008

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett 92, 071101 (2008).
[CrossRef]

2007

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

C. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, "Flexible terahertz fiber optics with low bend-induced losses," J. Opt. Soc. Am. B 24, 1230-1235 (2007).
[CrossRef]

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, "Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency," J. Lightwave Technol. 25, 2456-2462 (2007).
[CrossRef]

2006

M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

2005

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Q. Cao, J. Jahns "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005).
[CrossRef] [PubMed]

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF cladding terahertz waveguide," J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

2004

2003

2002

N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
[PubMed]

M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, "Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates," Opt. Express 10, 1227-1243 (2002).
[PubMed]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
[CrossRef]

2001

2000

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Albertsen, M.

Allen, S. J.

J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006).
[CrossRef] [PubMed]

Bauer, T.

Bjarklev, A.

Bolivar, P. H.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

Bonacinni, D.

Bosserhoff, A.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

Bowden, B.

Brucherseifer, M.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

Bttner, R.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

Cao, Q.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Chen, H.-W.

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Chen, L.-J.

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Cho, M.

H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
[CrossRef]

Czasch, S.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Engeness, T. D.

Fink, Y.

Fitzgerald, A.

Folkenberg, J. R.

Gallot, G.

George, R.

Gordon, K. C.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Grattan, K. T. V.

Grischkowsky, D.

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Han, H.

H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
[CrossRef]

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett 92, 071101 (2008).
[CrossRef]

Hidaka, T.

Ibanescu, M.

Ichikawa, S.

Inoue, H.

Ito, C. T.

Ito, H.

Jacobs, S. A.

Jahns, J.

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kao, T.-F.

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Kawase, K.

Kim, J.

H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
[CrossRef]

Kiwa, T.

Kurz, H.

M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

Lffler, T.

Lu, J.-Y.

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Marchewka, A.

Matsuura, Y.

McGowan, R. W.

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Minamide, H.

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

K. Wang, and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Mortensen, N. A.

Mueller, E.

Nagel, M.

M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

Newnham, D. A.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Nielsen, M. D.

Nishizawa, J.

Ogawa, Y.

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Park, H.

H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
[CrossRef]

Pedersen, P.

Pepper, M.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Plaxco, K. W.

J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006).
[CrossRef] [PubMed]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Rades, T.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Rahman, B. M. A.

Rajarajan, M.

Roskos, H. G.

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Siebert, K. J.

Skorobogatiy, M.

Soljacic, M.

Strachan, C. J.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Sun, C.-K.

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Taday, P. F.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Tamura, K.

Themistos, C.

Tonouchi, M.

Wang, C.-R.

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

Wang, K.

K. Wang, and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Watanabe, Y.

Weiseberg, O.

Wu, C.-Q.

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

Xu, J.

J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006).
[CrossRef] [PubMed]

Yamashita, M.

Yu, R.-J.

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

Zeitler, J. A.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Zhang, B.

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

Zhang, Y.-Q.

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

Appl. Phys. Lett

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett 92, 071101 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Pharmaceutical Sci.

C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-846 (2005).
[CrossRef]

Jap. J. Appl. Phys.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jap. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Nature

K. Wang, and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express

T. Lffler, T. Bauer, K. J. Siebert, H. G. Roskos, A. Fitzgerald, and S. Czasch, "Terahertz dark-field imaging of biomedical tissue," Opt. Express 9, 616-621 (2001).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-Loss Asymptotically Single-Mode Propagation in Large Core OmniGuide Fibers," Opt. Express 9, 748 (2001).
[CrossRef] [PubMed]

N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
[PubMed]

M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, "Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates," Opt. Express 10, 1227-1243 (2002).
[PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).
[CrossRef] [PubMed]

M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004).
[CrossRef] [PubMed]

Q. Cao, J. Jahns "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005).
[CrossRef] [PubMed]

Opt. Lett.

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, "Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits," Opt. Lett. 28, 2058-2060 (2003).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Optoelectronics Lett.

R.-J. Yu, Y.-Q. Zhang, B. Zhang, C.-R. Wang, and C.-Q. Wu, "New cobweb-structure hollow Bragg optical fibers," Optoelectronics Lett. 3, 10-13 (2007).
[CrossRef]

Phys. Med. Biol.

H. Park, M. Cho, J. Kim, and H. Han, "Terahertz pulse transmission in plastic photonic crystal fibres," Phys. Med. Biol. 43, 3765-3769 (2002).
[CrossRef]

Protein Sci.

J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein Sci. 15, 1175-1181 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys.

W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007).
[CrossRef]

Other

D. J. Cook, B. K. Decker, and M. G. Allen, "Quantitative THz Spectroscopy of Explosive Materials," OSA conf.: Optical Terahertz Science and Technology, PSI-SR-1196 (2005).

F. Poli, M. Foroni, D. Giovanelli, A. Cucinotta, S. Selleri, J. B. Jensen, J. Laegsgaard, A. Bjarklev, G. Vienne, C. Jakobsen, and J. Broeng, "Silica bridge impact on hollow-core Bragg fiber transmission properties," Proceedings OFC/NFOEC, 1-3 (2007).

A. W. Snyder and J. D. Love, Optical Waveguide Theory Chapman Hall, New York, (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of two porous fibers studied in this paper. a) Cross-section of a porous fiber with multiple sub-wavelength holes of diameter dλ separated by pitch Λ. b) Cross-section of a porous Bragg fiber featuring periodic sequence of concentric material rings of thickness h suspended in air by a network of circular bridges of diameter drod .

Fig. 2.
Fig. 2.

a) Effective refractive index of the fundamental core mode versus d/Λ for the two fiber designs having hole diameters of d/λ=[0.1,0.15]. For the fiber with d/λ=0.1, distribution of the power flux in the waveguide crossection Sz is shown for d/Λ=0.8 in the inset (a). b) Fraction of modal power guided in the air as a function of d/Λ. The two upper curves show the total power fraction in the air (air plus cladding) while the two lower curves indicate the power fraction in the air holes only.

Fig. 3.
Fig. 3.

a) Normalized absorption loss versus d/Λ for two porous fiber designs. b) Total of the bending and absorption losses versus d/Λ for the Teflon-based porous fiber with d/λ=0.1 operating at 0.5 THz.

Fig. 4.
Fig. 4.

Comparison of the propagation characteristics of the fundamental mode of a porous fiber (solid curves) with those of the fundamental mode of the equivalent rod-in-the-air subwavelength fiber (dashed curves). a) Normalized fiber and mode diameters. b) Modal effective refractive indices. c) Modal losses due to macro-bending.

Fig. 5.
Fig. 5.

Various implementations of porous fibers. a) Increasing the number of layers in a porous fiber leads to modes with larger effective mode diameters. In the lower plot a typical performance of a 4 layer porous fiber designed for λ=300 µm is shown. b) Schematic of a 25 layer porous Bragg fiber and flux distribution in its fundamental mode.

Fig. 6.
Fig. 6.

Radiation losses (solid lines) and absorption losses (dashed lines) of the hollow core Bragg fibers for various bridge sizes drod =[100,200,300] µm. For comparison, radiation loss of the equivalent Bragg fibers without rods are presented as dotted lines. Inset II shows Sz flux distribution in the fundamental core guided mode positioned at the minimum of the local bandgap at λ=378 µm. Insets I and III show field distributions in the fundamental core mode at the wavelengths of coupling with different surface states.

Fig. 7.
Fig. 7.

Bending losses of a porous Bragg fiber without bridges designed and operated at λc =300 µm. Bending loss is strongly sensitive to the polarization of an HE 11 mode, with the polarization in the plane of a bend being the lossiest. In the insets we show Sz flux distributions at the output of the 90° bends of various radii.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = air S z d A total S z d A
S z Re ( z ̂ · total d A E × H * ) ,
f = α mode α mat = Re ( n mat ) mat E 2 d A Re ( z ̂ · total d A E × H * ) ,
α π 8 1 A eff 1 β ( β 2 β cl 2 ) 1 4 exp ( 2 3 R b ( β 2 β cl 2 ) 3 2 β 2 ) R b ( β 2 β cl 2 ) β 2 + R c 1 λ R b exp ( R b λ · const ) ,
A eff = [ I ( r ) r d r ] 2 [ I 2 ( r ) r d r ] ,
D p = ( 2 N + 1 ) Λ = λ [ ( 2 N + 1 ) ( d λ ) ( d Λ ) ] λ ( 2 N + 1 ) ( d λ ) .
d rod n air 2 n eff 2 + h n mat 2 n eff 2 = λ c 2 .

Metrics