Abstract

Excitation and localization of surface plasmon polariton modes in metal-dielectric structures can be utilized to construct nanophotonic materials and devices with tuneable optical dispersion. We present a selective polariton generator (SPG) device that demonstrates switching of light transmission based on surface plasmon antennae principles. This polarization-sensitive structure selectively generates and transports polaritons of a desired wavelength through subwavelength apertures. Two of these SPGs have been combined around a nanohole into a new, single device that allows polarization and wavelength selective switching of transmission. The multi-state operation is confirmed by experiment results.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003).
    [CrossRef]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
    [CrossRef]
  5. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
    [CrossRef]
  6. Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005).
    [CrossRef]
  7. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
    [CrossRef]
  8. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901-1 - 213901-4 (2003).
  9. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
    [CrossRef]
  10. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  11. S.-H Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
    [CrossRef]
  12. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
    [CrossRef]
  13. C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007).
    [CrossRef]
  14. P. Marthandam and R. Gordon, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007).

2007 (2)

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007).
[CrossRef]

P. Marthandam and R. Gordon, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007).

2006 (2)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef]

2005 (2)

S.-H Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

2004 (2)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1944 (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Nano Lett. (2)

Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003).
[CrossRef]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other (1)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901-1 - 213901-4 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics