Abstract

In this letter, we report an experimental realization of distributing entangled photon pairs over 100 km of dispersion-shifted fiber. In the experiment, we used a periodically poled lithium niobate waveguide to generate the time-energy entanglement and superconducting single-photon detectors to detect the photon pairs after 100 km. We also demonstrate that the distributed photon pairs can still be useful for quantum key distribution and other quantum communication tasks.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys,  74, 145 (2002).
    [CrossRef]
  3. I. Marcikic, H. de Ridmatten, W. Tittel, H. Zbinden, and N. Gisin, "Long distance teleportation of qubits at teclecommunication wavelengths," Nature 421, 509 (2003).
    [CrossRef] [PubMed]
  4. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, "Quantum teleportation across the Danube," Nature 430, 849 (2004).
    [CrossRef] [PubMed]
  5. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled Photon pairs over 13 km: towards satilite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005);
    [CrossRef] [PubMed]
  6. R. Ursin, F. Tiefenbacher, T. Schmitt-manderbach, H. Weier, T. Scheidl, M. Lindenthai, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nat. Phys. 3, 481 (2007).
    [CrossRef]
  7. I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  8. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453 (2006).
    [CrossRef] [PubMed]
  9. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957 (2007).
    [CrossRef] [PubMed]
  10. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192WDMenvironment," postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.
  11. H. Hübel, M. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853 (2007).
    [CrossRef] [PubMed]
  12. J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
    [CrossRef] [PubMed]
  13. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
    [CrossRef]
  14. R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S.-W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005).
    [CrossRef] [PubMed]
  15. K. Parameswaran, R. Route, J. Kurz, R. Roussev, M. Fejer and M. Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179 (2002).
    [CrossRef]
  16. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, "Large-alphabet QKD using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007).
    [CrossRef] [PubMed]
  17. X. Xie and M. M. Fejer, "Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions," Opt. Lett. 31, 799-801 (2006).
    [CrossRef] [PubMed]
  18. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, "Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock," Opt. Express 15, 10288 (2007).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995), pp. 60-87.
  20. T. Honjo, K. Inoue, and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004)
    [CrossRef] [PubMed]
  21. J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1996).
    [CrossRef]

2007

2006

2005

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled Photon pairs over 13 km: towards satilite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005);
[CrossRef] [PubMed]

R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S.-W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005).
[CrossRef] [PubMed]

2004

T. Honjo, K. Inoue, and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004)
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, "Quantum teleportation across the Danube," Nature 430, 849 (2004).
[CrossRef] [PubMed]

2003

I. Marcikic, H. de Ridmatten, W. Tittel, H. Zbinden, and N. Gisin, "Long distance teleportation of qubits at teclecommunication wavelengths," Nature 421, 509 (2003).
[CrossRef] [PubMed]

2002

2001

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

1996

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1996).
[CrossRef]

1991

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1989

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Nat. Phys.

R. Ursin, F. Tiefenbacher, T. Schmitt-manderbach, H. Weier, T. Scheidl, M. Lindenthai, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nat. Phys. 3, 481 (2007).
[CrossRef]

Nature

I. Marcikic, H. de Ridmatten, W. Tittel, H. Zbinden, and N. Gisin, "Long distance teleportation of qubits at teclecommunication wavelengths," Nature 421, 509 (2003).
[CrossRef] [PubMed]

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, "Quantum teleportation across the Danube," Nature 430, 849 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1996).
[CrossRef]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, "Large-alphabet QKD using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007).
[CrossRef] [PubMed]

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled Photon pairs over 13 km: towards satilite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005);
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Rev. Mod. Phys

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys,  74, 145 (2002).
[CrossRef]

Other

C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192WDMenvironment," postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995), pp. 60-87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme for generation and detection of time-energy entanglement. The small dotted pulses represent the possible photon pairs, which can be generated during the long time span of the pump light, while the dotted red envelope of the photon pairs is from the long pump.

Fig. 2.
Fig. 2.

Diagram of the experimental setup. TBPF: tunable band-pass filter. PPLN1: a RPE PPLN waveguide for second harmonic generation of the pump source. PPLN2: a fiber pigtailed asymmetric Y-junction RPE PPLN waveguide for parametric down-conversion. LPF: long-pass filter to remove the 780 nm pump light and other parasitics. BPF: 0.8-nm-wide bandpass filter. SSPD: superconducting single-photon detector. TIA: time interval analyzer. Solid lines represent optical fibers and dotted lines represent free-space propagation.

Fig. 4.
Fig. 4.

Two-photon interference pattern (a) without and (b) with 100-km-long fiber (b). T1 is the temperature of the PLC MZI in the signal channel while T2 is the temperature in the idler channel. The Y-axis represents the coincidence rate per signal photon with an average of 0.5 million signal photons.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = μ η ch 2 η d 2 μ η ch 2 η d 2 + 2 μ 2 η ch 2 η d 2 + 8 μ η ch η d D t + 8 D 2 t 2 + ζ μ η ch 2 η d 2

Metrics