Abstract

We perform a near-field mapping of Bloch Surface Waves excited at the truncation interface of a planar silicon nitride multilayer. We directly determine the field distribution of Bloch Surface Waves along the propagation direction and normally to the surface. Furthermore, we present a direct measurement of a near-field enhancement effect under particular coupling conditions. Experimental evidence demonstrates that a ~102 near-field intensity enhancement can be realistically attained, thus confirming predictions from rigorous calculations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Tracts in Modern Physics Vol. 111 (Springer, Berlin, Heidelberg, 1988).
  2. G. Borstel and H. J. Falge, Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, Chichester, 1982).
  3. J. M. Simon, L. I. Perez, and V. A. Presa, "Surface Electromagnetic waves in the interface of an absorbing medium with a uniaxial crystal: comparison between closed solutions and attenuated total reflection," J. Opt. Soc. Am. A 13, 1249-1257 (1996).
    [CrossRef]
  4. R. D. Meade, K. D. Brommer, A.M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
    [CrossRef]
  5. W. M. Robertson, G. Arjavalingam. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18, 528-530 (1993).
    [CrossRef] [PubMed]
  6. M. Sarrazin and J.-P. Vigneron, "Bounded modes to the rescue of optical transmission," Europhys.News 3, 27-31 (2007).
    [CrossRef]
  7. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Phys. Rev. B 72, 233102 (2005).
    [CrossRef]
  8. D. Artigas and L. Torner, " Dyakonov Surface Waves in Photonic Metamaterials," Phys. Rev. Lett. 94, 013901 (2005).
    [CrossRef] [PubMed]
  9. M. Laroche, R. Carminati, and J.-J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005).
    [CrossRef]
  10. M. Shinn and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
    [CrossRef]
  11. J. Martorell, D. W. L. Sprung, and G. V. Morozov, "Surface TE waves on 1D photonic crystals," J. Opt. A: Pure Appl. Opt. 8, 630-638 (2006).
    [CrossRef]
  12. X. I. Saldana and G. Gonzales de la Cruz, "Electromagnetic surface waves in semi-infinite superlattices," J. Opt. Soc. Am. A 8, 36-40 (1991).
    [CrossRef]
  13. A. Y. Cho, A. Yariv, and P. Yeh, "Observation of confined propagation in Bragg waveguides," Appl. Phys. Lett. 30, 471-472 (1977).
    [CrossRef]
  14. P. Yeh, A. Yariv, and A. Y. Cho, "Optical surface waves in periodic layered media," Appl. Phys. Lett. 32, 104-105 (1978).
    [CrossRef]
  15. P. Yeh, A. Yariv, and C.-S Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977).
    [CrossRef]
  16. F. Ramos-Mendieta and P. Halevi, "Propagation constant-limited surface modes in dielectric superlattices," Opt. Commun. 129, 1-5 (1996).
    [CrossRef]
  17. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, "Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications," Appl. Phys. Lett. 91, 241109 (2007).
    [CrossRef]
  18. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, "Bragg surface wave device based on porous silicon and its application for sensing," Appl. Phys. Lett. 90, 241116 (2007).
    [CrossRef]
  19. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, "Photonic crystal sensor based on surface waves for thin-film characterization," Opt. Lett. 27, 646-648 (2002).
    [CrossRef]
  20. R. C. Nesnidal and T. G. Walker, "Multilayer dielectric structure for enhancement of evanescent waves," Appl. Opt. 35, 2226-2229 (1996).
    [CrossRef] [PubMed]
  21. G. Tourrel, J. Corset, Raman Microscopy: Developments and Applications, (Elsevier Academic Press, 1996).
  22. C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Brano, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, "Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures," J. Non Cryst. Solid 352, 1294-1297 (2006).
    [CrossRef]
  23. J. A. Gaspar-Armenta and F. Villa, "Band-structure properties of one-dimensional photonic crystals under the formalism of equivalent systems," J. Opt. Soc. Am. B 21, 405-412 (2004).
    [CrossRef]
  24. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, "Experimental observation of optical band-gaps for surface electromagnetic waves in a 1D silicon nitride photonic crystal," Opt. Lett. 33, 243-245 (2008).
    [CrossRef] [PubMed]
  25. R. Ulrich, "Theory of the prism-film coupler by plane wave analysis," J. Opt. Soc. Am. 60, 1337-1350 (1970).
    [CrossRef]
  26. Our experimental conditions allowed us to factorize the two-dimensional gaussian beam used for sample illumination as indicated by Ulrich [25].
  27. E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, "Growth process analysis of a-Si1−xNx:H films probed by X-ray reflectivity," Mat. Chem. and Phys. 66, 172-176 (2000).
    [CrossRef]
  28. R. D¨andliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A: Pure Appl. Opt. 6, S189-S196 (2004).
    [CrossRef]
  29. A. Nesci, R. D¨andliker, and H.-P. Herzig, "Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope," Opt. Lett 26, 208-210 (2001).
    [CrossRef]
  30. P. Tortora, R. D¨andliker, W. Nakagawa, and L. Vaccaro, "Detection of non-paraxial optical fields by optical fiber tip probes," Opt. Commun. 259, 876-882 (2006).
    [CrossRef]
  31. Y. Wu, M. Villanueva-Ibanez, C. L. Luyer, J. Shen, and J. Mugnier, ‘Application of multi-wavelength m-lines spectroscopy for optical analysis of sol-gel prepared waveguide thin films," Proc. SPIE 5946, 396-407 (2005).
  32. E. F. Y Kou and T. Tamir, "Excitation of surface plasmons by finite width beams," Appl. Opt. 28, 1169-1177 (1989).
    [CrossRef] [PubMed]
  33. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005).
    [CrossRef]
  34. W. M. Robertson, ‘Experimental measurement of the effect of termination on Surface Electromagnetic Waves in one-dimensional photonic bandgap arrays," J. Lightwave Technol. 17, 2013-2017 (1999).
    [CrossRef]
  35. A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas‘Surface wave effect on light scattering from one-dimensional photonic crystals," Opt. Commun. 277, 302-309 (2007).
    [CrossRef]
  36. L. Li, J. Chandezon, G. Granet, and J. P. Plumey, "Rigorous and efficient grating analysis method made easy for optical engineers," App. Opt. 38, 304-313 (1999).
    [CrossRef]
  37. A. Bouhelier and G. P. Wiederrecht, "Surface plasmon rainbow jets," Opt. Lett. 30, 884-886 (2005).
    [CrossRef] [PubMed]
  38. F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, "Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films," Opt. Express 15, 2613-2621 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas‘Surface wave effect on light scattering from one-dimensional photonic crystals," Opt. Commun. 277, 302-309 (2007).
[CrossRef]

F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, "Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films," Opt. Express 15, 2613-2621 (2007).
[CrossRef] [PubMed]

M. Sarrazin and J.-P. Vigneron, "Bounded modes to the rescue of optical transmission," Europhys.News 3, 27-31 (2007).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, "Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications," Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, "Bragg surface wave device based on porous silicon and its application for sensing," Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

2006 (3)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, "Surface TE waves on 1D photonic crystals," J. Opt. A: Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Brano, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, "Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures," J. Non Cryst. Solid 352, 1294-1297 (2006).
[CrossRef]

P. Tortora, R. D¨andliker, W. Nakagawa, and L. Vaccaro, "Detection of non-paraxial optical fields by optical fiber tip probes," Opt. Commun. 259, 876-882 (2006).
[CrossRef]

2005 (7)

Y. Wu, M. Villanueva-Ibanez, C. L. Luyer, J. Shen, and J. Mugnier, ‘Application of multi-wavelength m-lines spectroscopy for optical analysis of sol-gel prepared waveguide thin films," Proc. SPIE 5946, 396-407 (2005).

A. Bouhelier and G. P. Wiederrecht, "Surface plasmon rainbow jets," Opt. Lett. 30, 884-886 (2005).
[CrossRef] [PubMed]

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005).
[CrossRef]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Phys. Rev. B 72, 233102 (2005).
[CrossRef]

D. Artigas and L. Torner, " Dyakonov Surface Waves in Photonic Metamaterials," Phys. Rev. Lett. 94, 013901 (2005).
[CrossRef] [PubMed]

M. Laroche, R. Carminati, and J.-J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005).
[CrossRef]

M. Shinn and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

2004 (2)

R. D¨andliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A: Pure Appl. Opt. 6, S189-S196 (2004).
[CrossRef]

J. A. Gaspar-Armenta and F. Villa, "Band-structure properties of one-dimensional photonic crystals under the formalism of equivalent systems," J. Opt. Soc. Am. B 21, 405-412 (2004).
[CrossRef]

2002 (1)

2001 (1)

A. Nesci, R. D¨andliker, and H.-P. Herzig, "Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope," Opt. Lett 26, 208-210 (2001).
[CrossRef]

2000 (1)

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, "Growth process analysis of a-Si1−xNx:H films probed by X-ray reflectivity," Mat. Chem. and Phys. 66, 172-176 (2000).
[CrossRef]

1999 (2)

W. M. Robertson, ‘Experimental measurement of the effect of termination on Surface Electromagnetic Waves in one-dimensional photonic bandgap arrays," J. Lightwave Technol. 17, 2013-2017 (1999).
[CrossRef]

L. Li, J. Chandezon, G. Granet, and J. P. Plumey, "Rigorous and efficient grating analysis method made easy for optical engineers," App. Opt. 38, 304-313 (1999).
[CrossRef]

1996 (3)

1993 (1)

1991 (2)

R. D. Meade, K. D. Brommer, A.M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

X. I. Saldana and G. Gonzales de la Cruz, "Electromagnetic surface waves in semi-infinite superlattices," J. Opt. Soc. Am. A 8, 36-40 (1991).
[CrossRef]

1989 (1)

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, "Optical surface waves in periodic layered media," Appl. Phys. Lett. 32, 104-105 (1978).
[CrossRef]

1977 (2)

P. Yeh, A. Yariv, and C.-S Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977).
[CrossRef]

A. Y. Cho, A. Yariv, and P. Yeh, "Observation of confined propagation in Bragg waveguides," Appl. Phys. Lett. 30, 471-472 (1977).
[CrossRef]

1970 (1)

App. Opt. (1)

L. Li, J. Chandezon, G. Granet, and J. P. Plumey, "Rigorous and efficient grating analysis method made easy for optical engineers," App. Opt. 38, 304-313 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005).
[CrossRef]

A. Y. Cho, A. Yariv, and P. Yeh, "Observation of confined propagation in Bragg waveguides," Appl. Phys. Lett. 30, 471-472 (1977).
[CrossRef]

P. Yeh, A. Yariv, and A. Y. Cho, "Optical surface waves in periodic layered media," Appl. Phys. Lett. 32, 104-105 (1978).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, "Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications," Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, "Bragg surface wave device based on porous silicon and its application for sensing," Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Non Cryst. Solid (1)

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Brano, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, "Amorphous Silicon Nitride: a suitable alloy for optical multilayered structures," J. Non Cryst. Solid 352, 1294-1297 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

R. D¨andliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A: Pure Appl. Opt. 6, S189-S196 (2004).
[CrossRef]

J. Martorell, D. W. L. Sprung, and G. V. Morozov, "Surface TE waves on 1D photonic crystals," J. Opt. A: Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Mat. Chem. and Phys. (1)

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, "Growth process analysis of a-Si1−xNx:H films probed by X-ray reflectivity," Mat. Chem. and Phys. 66, 172-176 (2000).
[CrossRef]

News (1)

M. Sarrazin and J.-P. Vigneron, "Bounded modes to the rescue of optical transmission," Europhys.News 3, 27-31 (2007).
[CrossRef]

Opt. Commun. (3)

F. Ramos-Mendieta and P. Halevi, "Propagation constant-limited surface modes in dielectric superlattices," Opt. Commun. 129, 1-5 (1996).
[CrossRef]

P. Tortora, R. D¨andliker, W. Nakagawa, and L. Vaccaro, "Detection of non-paraxial optical fields by optical fiber tip probes," Opt. Commun. 259, 876-882 (2006).
[CrossRef]

A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas‘Surface wave effect on light scattering from one-dimensional photonic crystals," Opt. Commun. 277, 302-309 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

A. Nesci, R. D¨andliker, and H.-P. Herzig, "Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope," Opt. Lett 26, 208-210 (2001).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (3)

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Phys. Rev. B 72, 233102 (2005).
[CrossRef]

M. Laroche, R. Carminati, and J.-J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005).
[CrossRef]

R. D. Meade, K. D. Brommer, A.M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

D. Artigas and L. Torner, " Dyakonov Surface Waves in Photonic Metamaterials," Phys. Rev. Lett. 94, 013901 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Wu, M. Villanueva-Ibanez, C. L. Luyer, J. Shen, and J. Mugnier, ‘Application of multi-wavelength m-lines spectroscopy for optical analysis of sol-gel prepared waveguide thin films," Proc. SPIE 5946, 396-407 (2005).

Sens. Actuators B (1)

M. Shinn and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Tracts in Modern Physics Vol. 111 (Springer, Berlin, Heidelberg, 1988).

G. Borstel and H. J. Falge, Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, Chichester, 1982).

G. Tourrel, J. Corset, Raman Microscopy: Developments and Applications, (Elsevier Academic Press, 1996).

Our experimental conditions allowed us to factorize the two-dimensional gaussian beam used for sample illumination as indicated by Ulrich [25].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Refractive index profile of the multilayer deposited on a glass substrate; (b) Calculated band diagram (TE polarization) of a 1DPC consisting of an infinite sequence of high (n H =2.23) and low (n L =1.75) refractive index layers d H =240 nm and d L =294 nm respectively. The white regions indicate the forbidden bands. BSW dispersion curve associated to a semi-infinite 1DPC is explicitly indicated.

Fig. 2.
Fig. 2.

Sketch of the ellipsometric setup in the Kretschmann-Raether configuration used for the far-field characterization of BSW coupled to the silicon nitride 1DPC.

Fig. 3.
Fig. 3.

(a) Experimental far-field angular reflectance in the Kretschmann configuration; (b) Reflectance anomaly associated with BSW coupling (raw and deconvolved data).

Fig. 4.
Fig. 4.

Schematic diagram of the multi-heterodyne SNOM setup used for the near-field characterization of BSW coupled to silicon nitride 1DPC.

Fig. 5.
Fig. 5.

Two dimensional intensity maps of the optical near-field at the 1DPC surface collected by the multi-heterodyne SNOM: (a) TM-polarization, (b) TE-polarization. Illumination wavelength λBSW =1550 nm, incidence angle θ=θBSW . (c) Shear-force error signal map.

Fig. 6.
Fig. 6.

Cross sectional normalized amplitude distribution of the TE and TM polarized near-fields on the 1DPC surface measured along the line x=0.

Fig. 7.
Fig. 7.

(a) Amplitude profile of the BSW along the propagation direction. Best exponential fit returns a decay length L=470.2 µm; (b) Amplitude profile of BSW as a function of distance from the 1DPC surface. Best exponential fit returns a decay distance d=427 nm.

Fig. 8.
Fig. 8.

One dimensional Fourier Transformation (absolute value) of the complex term exp[iΦ(y)] for the TE-polarized field in the comet tail region.

Fig. 9.
Fig. 9.

Near-field intensity spectrum of (a) a TE and (b) a TM-polarized evanescent field on the 1DPC surface. The polarization-dependent field-enhancement effect is associated with the excitation of a TE-polarized BSW. For comparison purposes, the near-field spectrum of a simple glass/air interface illuminated under TIR conditions at a fixed angle is also shown (gray line in both figures).

Metrics