Abstract

An imaging mechanism for demagnifing features above wavelength into desired images beyond the diffraction limit is proposed in this letter. The super resolution ability (about two times and even more that of diffraction limit) arises from the surface plasmon wave excitation and amplification associated with metallic grating structure. Two specifically designed masks are projected to the grating surface from both sides, at one of which the superimposed field forms the desired images. Conceptually formalism of the imaging process is presented using spatial Fourier analysis and illustrated with numerical simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  3. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2127.
    [CrossRef] [PubMed]
  4. Z. Jacob, L. V. Alekseyev, E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8247.
    [CrossRef] [PubMed]
  5. Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
    [CrossRef]
  6. Stéphane Durant, Zhaowei Liu, Jennifer M. Steele, and Xiang Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
    [CrossRef]
  7. Zhaowei Liu, Ste’phaneDurant , Hyesog Lee, Yuri Pikus, Nicolas Fang, Yi Xiong, Cheng Sun, and Xiang Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403 (2007).
    [CrossRef] [PubMed]
  8. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Heidelberg, 1988).
  9. JosephW.  Goodman, Introduction to fourier optics, third edition, (Roberts, 2005).
  10. Ayman F. Abouraddy, and Kimani C. Toussaint, Jr., "Three-Dimensional Polarization Control in Microscopy," Phys. Rev. Lett. 96, 1503901(2006).
    [CrossRef]

2007 (2)

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Zhaowei Liu, Ste’phaneDurant , Hyesog Lee, Yuri Pikus, Nicolas Fang, Yi Xiong, Cheng Sun, and Xiang Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Zhaowei Liu, Ste’phaneDurant , Hyesog Lee, Yuri Pikus, Nicolas Fang, Yi Xiong, Cheng Sun, and Xiang Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Ayman F. Abouraddy, and Kimani C. Toussaint, Jr., "Three-Dimensional Polarization Control in Microscopy," Phys. Rev. Lett. 96, 1503901(2006).
[CrossRef]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef]

Other (2)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Heidelberg, 1988).

JosephW.  Goodman, Introduction to fourier optics, third edition, (Roberts, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of experiment setup for far field super resolution imaging system

Fig. 2.
Fig. 2.

(a) Simplified schematic of far field super resolution imaging with periodically corrugated metallic structures. (b) Extension of Fourier space for super resolution imaging close to the grating.

Fig. 3.
Fig. 3.

(a) and (b) are calculated transmission and reflection amplitude curves for the metallic structure shown as insets. (c) Aberration value of imaging two simulated sinusoidal fringes (kx =0.8nk 0 and kx =1.6nk 0) corresponding to propagating and evanescent waves respectively.

Fig. 4.
Fig. 4.

Super resolution imaging of two closely positioned spikes. (a) and (b) are the Fourier spectrum amplitude and spatial magnetic field intensity for spike object, image, control image and patterns projected to metallic surface. Some curves are scaled for better visualization. (c) and (d) are magnetic field intensity profile and slices close to the image plane for imaging two subwavelength spaced lines.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T m · G + ( I δ 0 m + R m ) · F = H m ,
( G F ) = ( T 0 I + R 0 T 1 R 1 ) 1 ( H 0 H 1 ) .
( H 2 H 3 ) = ( T 2 R 2 T 3 R 3 ) ( T 0 I + R 0 T 1 R 1 ) 1 ( H 0 H 1 ) .

Metrics