Abstract

The effects of perturbations of whispering gallery modes (WGMs) in cylindrical microcavities by embedded particles are studied by FDTD modeling. The principal effects are: i) spectral shift of the WGM-related peaks caused by the variation of the average index, ii) broadening of the WGM peaks introduced by the scattering, and iii) splitting of the WGM peaks due to formation of symmetric (SSW) and antisymmetric (ASW) standing waves. The focus of this work is on the last effect. We show that it can be maximized by placing the nanoparticle inside the cavity at a position corresponding to the antinode of the radial distribution of intensity of WGM. It is demonstrated that in this case the magnitude of splitting reaches several angstroms for 5 µm cavities with index 1.59 supporting moderately high quality (Q≈105) WGMs. We show that for relatively small particles with radius <70 nm and index contrasts <0.2 the magnitude of SSW/ASW splitting is linearly dependent on the size and index of the nanoparticle. This allows developing biomolecular sensors based on measuring this splitting in porous cavities. It is predicted that a similar effect of splitting can occur in semiconductor microdisks and pillars where the role of embedded dielectric nanoparticles can be played by self-assembled quantum dots.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum. Electron. 12, 15-32 (2006).
    [CrossRef]
  2. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  3. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  4. I. Teraoka and S. Arnold, "Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications," J. Opt. Soc. Am. B 23, 1381-1389 (2006).
    [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  6. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Splitting of high-Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
    [CrossRef] [PubMed]
  7. T. Kippenberg, S. Spillane, and K. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
    [CrossRef]
  8. B. E. Little, J. P. Laine, and S. T. Chu, "Surface roughness induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-6 (1997).
    [CrossRef] [PubMed]
  9. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006).
    [CrossRef] [PubMed]
  10. K. A. Fuller, "Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities," J. Opt. Soc. Am. A 12, 893-904 (1995).
    [CrossRef]
  11. L. Pavesi, G. Panzarini, and L. C. Andreani, "All-porous silicon-coupled microcavities: Experiment versus theory," Phys. Rev. B 58, 15794-15800 (1998).
    [CrossRef]
  12. V. M. Apalkov and M. E. Raikh, "Directional emission from a microdisk resonator with a linear defect," Phys. Rev. B 70, 195317 (2004).
    [CrossRef]
  13. J. Wiersig and M. Hentschel, "Unidirectional light emission from high- modes in optical microcavities," Phys. Rev. A 73, 031802 (2006).
    [CrossRef]
  14. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, J. Bloch, "Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
    [CrossRef] [PubMed]
  15. V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115 (2007).
    [CrossRef]
  16. Rsoft Design Group. RSoft FullWAVE version 6.0. http://www.rsoftdesign.com
  17. K. A. Fuller and D. D. Smith, "Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects," Opt. Express 15, 3575-3580 (2007).
    [CrossRef] [PubMed]

2007

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115 (2007).
[CrossRef]

K. A. Fuller and D. D. Smith, "Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects," Opt. Express 15, 3575-3580 (2007).
[CrossRef] [PubMed]

2006

2005

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, J. Bloch, "Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

2004

V. M. Apalkov and M. E. Raikh, "Directional emission from a microdisk resonator with a linear defect," Phys. Rev. B 70, 195317 (2004).
[CrossRef]

2003

2002

2001

1998

L. Pavesi, G. Panzarini, and L. C. Andreani, "All-porous silicon-coupled microcavities: Experiment versus theory," Phys. Rev. B 58, 15794-15800 (1998).
[CrossRef]

1997

1995

Appl. Opt.

Appl. Phys. Lett.

V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum. Electron. 12, 15-32 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Wiersig and M. Hentschel, "Unidirectional light emission from high- modes in optical microcavities," Phys. Rev. A 73, 031802 (2006).
[CrossRef]

Phys. Rev. B

L. Pavesi, G. Panzarini, and L. C. Andreani, "All-porous silicon-coupled microcavities: Experiment versus theory," Phys. Rev. B 58, 15794-15800 (1998).
[CrossRef]

V. M. Apalkov and M. E. Raikh, "Directional emission from a microdisk resonator with a linear defect," Phys. Rev. B 70, 195317 (2004).
[CrossRef]

Phys. Rev. Lett.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, J. Bloch, "Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Other

Rsoft Design Group. RSoft FullWAVE version 6.0. http://www.rsoftdesign.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Sketch of the cylindrical cavity with the built-in source of light and the monitor where the field is calculated. The position of the nanocylinder is determined by distance d measured between the center of the nanocylinder and the upper edge of the cavity (d<0 means the nanocylinder is inside the cavity). (b) Spectrum of WGM resonances for an unperturbed 5µm diameter microcylinder cavity with the index nc =1.59. Spectra (c) to (g) represent WGM peaks perturbed by a nanocylinder of radius Rp =50 nm and index np =1.7 located at different d. In order to separate the spectra, each successive spectrum is divided by 104. The insets illustrate the difference of intensity distributions for the ASW at 540.846 nm and for the SSW at 540.912 nm in terms of their overlap with the nanocylinder. (h) The dependence of SSW/ASW splitting on the position of nanocylinder represented by d.

Fig. 2.
Fig. 2.

(a) Dependence of WGM spectra on the index contrast Δn=np -nc of the perturbation. The red dashed line and the blue dashed line show behavior of ASW peak and SSW peak respectively. The perturbation setting is as shown in the inset. The size of the cavity and the nanocylinder, and the spectrum scaling is the same as that for Fig. 1. Dependence of (b) quality factors and (c) splitting of SSW and ASW peaks on the index contrast Δn of the perturbation.

Figure 3.
Figure 3.

Dependencies of (a) SSW and ASW peak positions and (b) SSW/ASW splitting on the radius (R p) of the nanocylinder (n p=1.64) embedded at d=-R p deep inside 5 µm microcylinder (nc =1.59). The rest of the simulation setting is as for Fig. 2.

Metrics