Abstract

In this paper, we have fabricated for the first time films with different orientations of principal axes but similar principal indices and also films with different principal refractive indices but the same orientations of principal axes. During deposition, the deposition angle and the substrate sweep angle are varied to control separately the porosity (refractive principal indices) and column tilt angle (orientations of principal axes) of a birefringent thin film.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. C. Van Popta, M. M. Hawkeye, J. C. Sit and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition," Opt. Lett. 29, 2545-2547 (2004).
    [CrossRef] [PubMed]
  2. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).
  3. I. J. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
    [CrossRef]
  4. I. J. Hodgkinson and Q. H. Wu, "Serial bideposition of anisotropic thin films with enhanced linear birefringence," Appl. Opt. 38, 3621-3625 (1999).
    [CrossRef]
  5. K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
    [CrossRef]
  6. Y. J. Jen and C. Y. Peng, "Narrow-band and broad-band polarization conversion reflection filters," Appl. Phys. 89, 041128 (2006).
  7. Y. J. Jen, C. Y. Peng, and H. H. Chang, "Optical constant determination of an anisotropic thin film via polarization conversion," Opt. Express 15, 4445-4451 (2007).
    [CrossRef] [PubMed]
  8. K. Robbie, J. C. Sit and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
    [CrossRef]
  9. M. O. Jensen and M. J. Brett, "Porosity engineering in glancing angle deposition thin films," Appl. Phys. A Mater. 80, 763-768 (2005).
    [CrossRef]
  10. D. A. Gish, M. A. Summers and M. J. Brett, "Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition," Photonics Nanostruct. Fundam. Appl.  4, 23-29 (2006).
    [CrossRef]
  11. I. J. Hodgkinson, Q. H. Wu and J. Hazel, "Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide," Appl. Opt. 37, 2653-2659 (1998).
    [CrossRef]
  12. R. N. Tait, T. Smy and M. J. Brett, "Modelling and characterization of columnar growth in evaporated films," Thin Solid Films 226, 196-201 (1993).
    [CrossRef]

2007

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).

Y. J. Jen, C. Y. Peng, and H. H. Chang, "Optical constant determination of an anisotropic thin film via polarization conversion," Opt. Express 15, 4445-4451 (2007).
[CrossRef] [PubMed]

2006

Y. J. Jen and C. Y. Peng, "Narrow-band and broad-band polarization conversion reflection filters," Appl. Phys. 89, 041128 (2006).

D. A. Gish, M. A. Summers and M. J. Brett, "Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition," Photonics Nanostruct. Fundam. Appl.  4, 23-29 (2006).
[CrossRef]

2004

2000

1999

1998

1997

K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

1993

R. N. Tait, T. Smy and M. J. Brett, "Modelling and characterization of columnar growth in evaporated films," Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys.

Y. J. Jen and C. Y. Peng, "Narrow-band and broad-band polarization conversion reflection filters," Appl. Phys. 89, 041128 (2006).

J. Vac. Sci. Technol. A

K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

K. Robbie, J. C. Sit and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

Nat. Photonics

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).

Opt. Express

Opt. Lett.

Photonics Nanostruct.

D. A. Gish, M. A. Summers and M. J. Brett, "Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition," Photonics Nanostruct. Fundam. Appl.  4, 23-29 (2006).
[CrossRef]

Thin Solid Films

R. N. Tait, T. Smy and M. J. Brett, "Modelling and characterization of columnar growth in evaporated films," Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Other

M. O. Jensen and M. J. Brett, "Porosity engineering in glancing angle deposition thin films," Appl. Phys. A Mater. 80, 763-768 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The relation between the deposition angle α and the column angle β for the GLAD process.

Fig. 2.
Fig. 2.

Schematic of the Phisweep deposition process.

Fig. 3.
Fig. 3.

The column angle β as a function of deposition angle α for various sweep angle γ in Phisweep technique.

Fig. 4.
Fig. 4.

Cross-section SEM images of the MgF2 anisotropic thin films: The sample (a) is deposited at α=70° with γ=45°. The sample (b) is deposited at α=80° and γ=60°.

Fig. 5.
Fig. 5.

Cross-section SEM images of the MgF2 anisotropic thin films: The sample (a) is deposited at α=70° with γ=60°. The sample (b) is deposited at α=70° and γ=75°.

Fig. 6.
Fig. 6.

The polarization conversion angular spectra of the MgF2 anisotropic thin films: The sample (a) is deposited at α=70° with γ=60°. The sample (b) is deposited at α=80° and γ=60°. The sample (c) is deposited at α=70° with γ=60°. The sample (d) is deposited at α=70° and γ=75°.

Tables (2)

Tables Icon

Table 1. Optical constants of the MgF2 columnar thin films. Both (a) and (b) have the same column angle, but their principal indices are in different ranges.

Tables Icon

Table 2. Optical constants of the MgF2 columnar thin films measured by polarization conversion. Both (a) and (b) have similar refractive indices, but their column angles are different.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tan β = E × tan α
β = α arcsin ( 1 cos α 2 )
tan β = tan ( α arcsin ( 1 cos α 2 ) ) cos γ

Metrics