Abstract

Designs of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials are optimized using a genetic algorithm. Co-sputtered and low-refractive-index materials allow the fine-tuning of refractive index, which is required to achieve optimum antireflection characteristics. The algorithm minimizes reflection over a wide range of wavelengths and incident angles, and includes material dispersion. Designs of antireflection coatings for silicon-based image sensors and solar cells, as well as triple-junction GaInP/GaAs/Ge solar cells are presented, and are shown to have significant performance advantages over conventional coatings. Nano-porous low-refractive-index layers are found to comprise generally half of the layers in an optimized antireflection coating, which underscores the importance of nano-porous layers for high-performance broadband and omnidirectional antireflection coatings.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. H. Southwell, "Coating design using very thin high- and low-index layers," Appl. Opt. 24, 457-460 (1985).
    [CrossRef] [PubMed]
  2. J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Silica nanorod-array films with very low refractive indices," Nano Lett. 5, 1385 (2005).
    [CrossRef] [PubMed]
  3. M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material," Appl. Phys. Lett. 90, 141115 (2007).
    [CrossRef]
  4. J.-Q. Xi, M. F. Schubert, J. K. Kim, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).
  5. W. H. Southwell, "Gradient-index antireflection coatings," Opt. Lett. 8, 584-583 (1983).
    [CrossRef] [PubMed]
  6. D. Poitras and J. A. Dobrowolski, "Toward perfect antireflection coatings: 2. Theory," Appl. Opt. 43, 1286-1295 (2004).
    [CrossRef] [PubMed]
  7. H. Greiner, "Robust optical coating design with evolutionary strategies," Appl. Opt. 35, 5477-5483 (1996).
    [CrossRef] [PubMed]
  8. S. Martin, A. Brunet-Bruneau, and J. Rivory, "Simulated Darwinian evolution of homogeneous multilayer systems: a new method for optical coating design," Opt. Commun. 110, 503-506 (1994).
    [CrossRef]
  9. S. Martin, J. Rivory, and M. Schoenauer, "Synthesis of optical multilayer systems using genetic algorithms," Appl. Opt. 34, 2247-2254 (1995).
    [CrossRef] [PubMed]
  10. J.-M. Yang and C.-Y. Kao, "An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incidence," J. Lightwve Technol. 19, 559-570 (2001).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  12. H. Nagel, A. G. Aberle, and R. Hezel, "Optimized antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide," Prog. Photovolt: Res. Appl. 7, 245-260 (1999).
    [CrossRef]
  13. E. Vazsonya, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortsmans, J. Szlufcik, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Sol. Energy Mater. Sol. Cells 57, 179-188 (1999).
    [CrossRef]
  14. N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and D. R. Lillingron, "Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells," Sol. Energy Mater. Sol. Cells 66, 453-466 (2001).
    [CrossRef]
  15. D. J. Friedman and J. M. Olson, "Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells," Prog. Photovolt: Res. Appl. 9, 179-189 (2001).
    [CrossRef]
  16. Z. Q. Li, Y. G. Xiao, and Z. M. Simon Li, "Modeling of multi-junction solar cells by Crosslight APSYS," Proc. SPIE 6339, 633909 (2006).
    [CrossRef]

2007

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material," Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).

2006

Z. Q. Li, Y. G. Xiao, and Z. M. Simon Li, "Modeling of multi-junction solar cells by Crosslight APSYS," Proc. SPIE 6339, 633909 (2006).
[CrossRef]

2005

J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Silica nanorod-array films with very low refractive indices," Nano Lett. 5, 1385 (2005).
[CrossRef] [PubMed]

2004

2001

N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and D. R. Lillingron, "Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells," Sol. Energy Mater. Sol. Cells 66, 453-466 (2001).
[CrossRef]

D. J. Friedman and J. M. Olson, "Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells," Prog. Photovolt: Res. Appl. 9, 179-189 (2001).
[CrossRef]

J.-M. Yang and C.-Y. Kao, "An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incidence," J. Lightwve Technol. 19, 559-570 (2001).
[CrossRef]

1999

H. Nagel, A. G. Aberle, and R. Hezel, "Optimized antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide," Prog. Photovolt: Res. Appl. 7, 245-260 (1999).
[CrossRef]

E. Vazsonya, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortsmans, J. Szlufcik, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Sol. Energy Mater. Sol. Cells 57, 179-188 (1999).
[CrossRef]

1996

1995

1994

S. Martin, A. Brunet-Bruneau, and J. Rivory, "Simulated Darwinian evolution of homogeneous multilayer systems: a new method for optical coating design," Opt. Commun. 110, 503-506 (1994).
[CrossRef]

1985

1983

Appl. Opt.

Appl. Phys. Lett.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material," Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

J. Lightw. Technol.

J.-M. Yang and C.-Y. Kao, "An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incidence," J. Lightwve Technol. 19, 559-570 (2001).
[CrossRef]

Nano Lett.

J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Silica nanorod-array films with very low refractive indices," Nano Lett. 5, 1385 (2005).
[CrossRef] [PubMed]

Nature Photon.

J.-Q. Xi, M. F. Schubert, J. K. Kim, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).

Opt. Commun.

S. Martin, A. Brunet-Bruneau, and J. Rivory, "Simulated Darwinian evolution of homogeneous multilayer systems: a new method for optical coating design," Opt. Commun. 110, 503-506 (1994).
[CrossRef]

Opt. Lett.

Proc. SPIE

Z. Q. Li, Y. G. Xiao, and Z. M. Simon Li, "Modeling of multi-junction solar cells by Crosslight APSYS," Proc. SPIE 6339, 633909 (2006).
[CrossRef]

Prog. Photovolt: Res. Appl.

D. J. Friedman and J. M. Olson, "Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells," Prog. Photovolt: Res. Appl. 9, 179-189 (2001).
[CrossRef]

H. Nagel, A. G. Aberle, and R. Hezel, "Optimized antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide," Prog. Photovolt: Res. Appl. 7, 245-260 (1999).
[CrossRef]

Sol. Energy Mater. Sol. Cells

E. Vazsonya, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortsmans, J. Szlufcik, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Sol. Energy Mater. Sol. Cells 57, 179-188 (1999).
[CrossRef]

N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and D. R. Lillingron, "Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells," Sol. Energy Mater. Sol. Cells 66, 453-466 (2001).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Reflection coefficient of (left) silicon and optimized (center) one- and (right) three-layer antireflection coatings for silicon image sensors versus wavelength and incident angle.

Fig. 2.
Fig. 2.

Angle- and wavelength-averaged reflection coefficient as a function of the number of layers for optimized antireflection coatings for a silicon image sensor.

Fig. 3.
Fig. 3.

Reflection coefficient of (left) one-, (center) two-, and (right) four-layer antireflection coatings optimized for silicon solar cells versus wavelength and incident angle.

Fig. 4.
Fig. 4.

Angle- and wavelength-averaged reflection coefficient as a function of the number of layers for optimized antireflection coatings for silicon solar cells.

Fig. 5.
Fig. 5.

Reflectivity of (top to bottom) a bare GaInP/GaAs/Ge triple-junction solar cell, and triple-junction solar cells with optimized one-, three-, and five-layer antireflection coatings.

Fig. 6.
Fig. 6.

Angle- and wavelength-averaged reflection coefficient as a function of the number of layers for optimized antireflection coatings for GaInP/GaAs/Ge triple-junction solar cells.

Tables (3)

Tables Icon

Table 1. Thickness t (in nm) and composition c of individual layers for optimized silicon image sensor antireflection coatings. (CS=co-sputtered layer, NP=nano-porous low-n layer)

Tables Icon

Table 2. Thickness t (in nm) and composition c of individual layers for optimized silicon solar cell antireflection coatings. (CS=co-sputtered layer, NP=nano-porous low-n layer)

Tables Icon

Table 3. Thickness t (in nm) and composition c of individual layers for optimized GaInP/GaAs/Ge triple-junction solar cell antireflection coatings. (CS=co-sputtered layer, NP=nano-porous low-n layer)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ave = 1 λ 2 λ 1 2 π λ 1 λ 2 0 π 2 R TE ( λ , θ ) + R TM ( λ , θ ) 2 d θ d λ

Metrics