Abstract

We demonstrate lasing action with a high spontaneous emission factor and temperature insensitivity in InAs/InGaAs quantum dots (QD) embedded in photonic crystal nanocavities. A quality factor (Q) of over 10,000 was achieved by suppressing the material absorption by QDs uncoupled to the cavity mode. High Q cavities exhibited ultra low threshold lasing with a spontaneous emission factor of 0.7. Less frequent carrier escape from the QDs, which was primarily favored by high potential barrier energy, enabled low threshold lasing up to 90 K.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, "Coherence properties of high-β elliptical semiconductor micropillar lasers," Appl. Phys. Lett. 90, 161111 (2007).
    [CrossRef]
  2. Y.-R. Nowicki-Bringuier, J. Claudon, C. Böckler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gérard, "High Q whispering gallery modes in GaAs/AlAs pillar microcavities," Opt. Express 15, 17291-17304 (2007).
    [CrossRef] [PubMed]
  3. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
    [CrossRef] [PubMed]
  4. K. Srinvasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
    [CrossRef]
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Designing Photonic Crystals for Applications," in Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, Princeton, 1995).
  6. K. Sakoda, "Optical Response of photonic crystals," in Optical Properties of Photonic Crystals, (Springer, Berlin, 2001).
  7. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  9. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, D.-H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," App. Phys. Lett. 76, 2982-2984 (2000).
    [CrossRef]
  10. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
    [CrossRef]
  11. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
    [CrossRef]
  12. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  13. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
    [CrossRef] [PubMed]
  14. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
    [CrossRef]
  15. Y. Yamamoto, F. Matinaga, S. Machida, A. Karlsson, J. Jacobson, G. Björk, T. Mukai, "Quantum electrodynamic effects in semiconductor microcavities - Microlasers and coherent exciton-polariton emission," J. De Physique IV 3, 39-46 (1993).
    [CrossRef]
  16. D. P. Popescu, P. G. Eliseev, A. Stintz, K. J. Malloy, "Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well," Semicond. Sci. Technol. 19, 33-38 (2004).
    [CrossRef]
  17. N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, H. Okamoto, "Charged exciton emission at 1.3 μm InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
    [CrossRef]
  18. X. Mu, Y. J. Ding, B. S. Ooi, M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006).
    [CrossRef]
  19. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
    [CrossRef]
  20. S. R. Johnson, T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," J. Appl. Phys. 78, 5609-5613 (1995).
    [CrossRef]
  21. H. Altug, J. Vučković, "Photonic crystal nanocavity array laser," Opt. Express 13, 8819-8828 (2005).
    [CrossRef] [PubMed]
  22. A. A. Ukhanov, A. Stintz, P. G. Eliseev, K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004).
    [CrossRef]

2007 (4)

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, "Coherence properties of high-β elliptical semiconductor micropillar lasers," Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

Y.-R. Nowicki-Bringuier, J. Claudon, C. Böckler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gérard, "High Q whispering gallery modes in GaAs/AlAs pillar microcavities," Opt. Express 15, 17291-17304 (2007).
[CrossRef] [PubMed]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

K. Srinvasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

2006 (3)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

X. Mu, Y. J. Ding, B. S. Ooi, M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006).
[CrossRef]

2005 (3)

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, H. Okamoto, "Charged exciton emission at 1.3 μm InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

H. Altug, J. Vučković, "Photonic crystal nanocavity array laser," Opt. Express 13, 8819-8828 (2005).
[CrossRef] [PubMed]

2004 (3)

A. A. Ukhanov, A. Stintz, P. G. Eliseev, K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004).
[CrossRef]

D. P. Popescu, P. G. Eliseev, A. Stintz, K. J. Malloy, "Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well," Semicond. Sci. Technol. 19, 33-38 (2004).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

2002 (2)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

2000 (1)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, D.-H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," App. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1995 (1)

S. R. Johnson, T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," J. Appl. Phys. 78, 5609-5613 (1995).
[CrossRef]

1993 (1)

Y. Yamamoto, F. Matinaga, S. Machida, A. Karlsson, J. Jacobson, G. Björk, T. Mukai, "Quantum electrodynamic effects in semiconductor microcavities - Microlasers and coherent exciton-polariton emission," J. De Physique IV 3, 39-46 (1993).
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

App. Phys. Lett. (1)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, D.-H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," App. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, "Coherence properties of high-β elliptical semiconductor micropillar lasers," Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, H. Okamoto, "Charged exciton emission at 1.3 μm InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

X. Mu, Y. J. Ding, B. S. Ooi, M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006).
[CrossRef]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004).
[CrossRef]

Electron. Lett. (1)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. R. Johnson, T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," J. Appl. Phys. 78, 5609-5613 (1995).
[CrossRef]

J. De Physique IV (1)

Y. Yamamoto, F. Matinaga, S. Machida, A. Karlsson, J. Jacobson, G. Björk, T. Mukai, "Quantum electrodynamic effects in semiconductor microcavities - Microlasers and coherent exciton-polariton emission," J. De Physique IV 3, 39-46 (1993).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

K. Srinvasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

Phys. Rev. B (1)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

D. P. Popescu, P. G. Eliseev, A. Stintz, K. J. Malloy, "Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well," Semicond. Sci. Technol. 19, 33-38 (2004).
[CrossRef]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Designing Photonic Crystals for Applications," in Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, Princeton, 1995).

K. Sakoda, "Optical Response of photonic crystals," in Optical Properties of Photonic Crystals, (Springer, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron microscope images of (a) cross-sectional PhC slab and (b) point defect cavity.

Fig. 2.
Fig. 2.

(a). PL spectra of fabricated PhC nanocavities with various lattice constants a. Cavity modes labeled D (dipole), H (hexapole) and Q (quadrupole) are identified by FDTD calculation. (b) PL (red circles) and theoretical (blue circles) linewidth of the H mode dependence of detuning energy. Blue, red and green regions indicate the area of the intrinsic structural imperfection, the re-absorption loss and distortion effect, respectively. The dotted curve shows the PL spectrum of the QD ensemble (right axis).

Fig. 3.
Fig. 3.

Integrated PL intensity as a function of excitation power for (a) CavI and (b) CavII. The curves indicate fitting results obtained by using a rate equation. The fitting parameter ® is 0.01, 0.03, 0.05, 0.08, and 0.1 for CavI, and 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0 for CavII.

Fig. 4.
Fig. 4.

Time evolution of the photon density solved by a rate equation with the same parameters as Fig. 3(b) and ® of 0.7. The carrier density varied from 0.5 to 30N th.

Fig. 5.
Fig. 5.

(a)~(c) Time decay spectra with various excitation powers, and (d) carrier lifetime as a function of excitation power for CavII (red circles). The lifetime value calculated by a rate equation (green chains) is also shown. The black circles and dotted line indicate the lifetime of the non-lasing device and the temporal resolution limit.

Fig. 6.
Fig. 6.

(a). Integrated PL intensity as a function of the excitation power of CavII at various temperatures. The arrows and dashed curves are the estimated threshold and an eye guide, respectively. (b) Carrier lifetime of CavII below the threshold (red) and bare QD (blue circles). The excitation power is the same in both cases. The green asterisks show the cavity mode linewidth (right axis).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dN dt = R p v g G S N τ r N τ nr ,
dS dt = v g Γ G S β Γ N τ r S τ p ,

Metrics