Abstract

We demonstrate a wideband circular polarization reflector fabricated as cascades of helical films with different pitch thickness by using glancing angle deposition (GLAD) technique. The full-width-at-half-maximum bandwidth of this reflector is measured from the reflectance spectra and is found about 200 nm indicating the feasibility of wideband reflector. A helical TiO2 film with three sections, each of different pitch thickness, is also studied. It shows three Bragg peaks at different wavelengths. To select appropriate material for this circular reflector, the optical properties of 5-turns TiO2, ZrO2, and Ta2O5 helical films and the porosity effect on the TiO2 helical film are investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
    [CrossRef]
  2. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005)
    [CrossRef]
  3. S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
    [CrossRef]
  4. A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
    [CrossRef]
  5. K. Robbie and M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991- 2993 (1995).
    [CrossRef]
  6. K. Robbie and M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin film," Nature 384, 616 (1996).
  7. K. Robbie and M. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
    [CrossRef]
  8. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, "Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure," Rev. Sci. Instrum. 75, 1089-1097 (2004).
    [CrossRef]
  9. S.-H. Woo and C. K. Hwangbo, "Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD)," J. Korean Phys. Soc. 48, 1199-1204 (2006).
  10. K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
    [CrossRef]
  11. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, "Optical properties of a three-dimensional silicon square spiral photonic crystal," Photon. 1, 37-42 (2003).
  12. I. Hodgkinson and Q. H. Wu, "Birefringent thin-film polarizers for use at normal incidence and with planar technologies," Appl. Phy. Lett. 74, 1794-1796 (1999).
    [CrossRef]
  13. K. Kaminska and K. Robbie, "Birefringent omnidirectional reflector," Appl. Opt. 43,1570-1576 (2004).
    [CrossRef] [PubMed]
  14. A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition," Opt. Lett. 29, 2545-2547 (2004).
    [CrossRef] [PubMed]
  15. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Vacuum Evaporated Porous Silicon Photonic Interference Filters," Appl. Opt. 42, 4212-4219 (2003).
    [CrossRef] [PubMed]
  16. S. R. Kennedy and M. J. Brett, "Porous Broadband Antireflection Coating by Glancing Angle Deposition," Appl. Opt. 42, 4573-4579 (2003).
    [CrossRef] [PubMed]
  17. Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, "All-silicon polarizing filters for near-infrared wavelengths," J. Appl. Phys. 95, 402-404 (2004).
    [CrossRef]
  18. J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Nanostructured gradient index optical filter for high-speed humidity sensing," Sensors and Actuators B,  120, 213-219 (2006).
    [CrossRef]
  19. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
    [CrossRef]
  20. A. V. Popta, J. C. Sit, and M. J. Brett, "Optical properties of porous helical thin films," Appl. Opt. 43, 3632-3639 (2004).
    [CrossRef] [PubMed]
  21. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39,642-649 (2000).
    [CrossRef]
  22. F. Chiadini and A. Lakhtakia, "Design of wideband circular-polarization filters made of chiral sculptured thin films," Microwave Opt. Technol. Lett. 42, 135-138 (2004).
    [CrossRef]
  23. C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, "Thickness and density evaluation nanostructured thin films by glancing angle deposition," J. Vac. Sci. Technol. B 23, 2545-2552 (2005).
    [CrossRef]
  24. M. W. McCall, "Axial electromagnetic wave propagation in inhomogeneous dielectrics," Math. Comput. Model. 34, 1483-1497 (2001).
    [CrossRef]
  25. Y. Huang, Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Exp. 15, 6414-6419 (2007).
    [CrossRef]

2007

Y. Huang, Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Exp. 15, 6414-6419 (2007).
[CrossRef]

2006

S.-H. Woo and C. K. Hwangbo, "Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD)," J. Korean Phys. Soc. 48, 1199-1204 (2006).

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Nanostructured gradient index optical filter for high-speed humidity sensing," Sensors and Actuators B,  120, 213-219 (2006).
[CrossRef]

2005

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, "Thickness and density evaluation nanostructured thin films by glancing angle deposition," J. Vac. Sci. Technol. B 23, 2545-2552 (2005).
[CrossRef]

2004

A. V. Popta, J. C. Sit, and M. J. Brett, "Optical properties of porous helical thin films," Appl. Opt. 43, 3632-3639 (2004).
[CrossRef] [PubMed]

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, "All-silicon polarizing filters for near-infrared wavelengths," J. Appl. Phys. 95, 402-404 (2004).
[CrossRef]

F. Chiadini and A. Lakhtakia, "Design of wideband circular-polarization filters made of chiral sculptured thin films," Microwave Opt. Technol. Lett. 42, 135-138 (2004).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, "Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure," Rev. Sci. Instrum. 75, 1089-1097 (2004).
[CrossRef]

K. Kaminska and K. Robbie, "Birefringent omnidirectional reflector," Appl. Opt. 43,1570-1576 (2004).
[CrossRef] [PubMed]

A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition," Opt. Lett. 29, 2545-2547 (2004).
[CrossRef] [PubMed]

2003

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Vacuum Evaporated Porous Silicon Photonic Interference Filters," Appl. Opt. 42, 4212-4219 (2003).
[CrossRef] [PubMed]

S. R. Kennedy and M. J. Brett, "Porous Broadband Antireflection Coating by Glancing Angle Deposition," Appl. Opt. 42, 4573-4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, "Optical properties of a three-dimensional silicon square spiral photonic crystal," Photon. 1, 37-42 (2003).

A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
[CrossRef]

2001

M. W. McCall, "Axial electromagnetic wave propagation in inhomogeneous dielectrics," Math. Comput. Model. 34, 1483-1497 (2001).
[CrossRef]

2000

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39,642-649 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

1999

I. Hodgkinson and Q. H. Wu, "Birefringent thin-film polarizers for use at normal incidence and with planar technologies," Appl. Phy. Lett. 74, 1794-1796 (1999).
[CrossRef]

1998

K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

1997

K. Robbie and M. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

1996

K. Robbie and M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin film," Nature 384, 616 (1996).

1995

K. Robbie and M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991- 2993 (1995).
[CrossRef]

1959

N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
[CrossRef]

Appl. Opt.

Appl. Phy. Lett.

I. Hodgkinson and Q. H. Wu, "Birefringent thin-film polarizers for use at normal incidence and with planar technologies," Appl. Phy. Lett. 74, 1794-1796 (1999).
[CrossRef]

J. Appl. Phys.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, "All-silicon polarizing filters for near-infrared wavelengths," J. Appl. Phys. 95, 402-404 (2004).
[CrossRef]

J. Korean Phys. Soc.

S.-H. Woo and C. K. Hwangbo, "Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD)," J. Korean Phys. Soc. 48, 1199-1204 (2006).

J. Vac. Sci. Technol. A

K. Robbie and M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991- 2993 (1995).
[CrossRef]

K. Robbie and M. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, "Thickness and density evaluation nanostructured thin films by glancing angle deposition," J. Vac. Sci. Technol. B 23, 2545-2552 (2005).
[CrossRef]

Math. Comput. Model.

M. W. McCall, "Axial electromagnetic wave propagation in inhomogeneous dielectrics," Math. Comput. Model. 34, 1483-1497 (2001).
[CrossRef]

Microwave Opt. Technol. Lett.

F. Chiadini and A. Lakhtakia, "Design of wideband circular-polarization filters made of chiral sculptured thin films," Microwave Opt. Technol. Lett. 42, 135-138 (2004).
[CrossRef]

Nature

K. Robbie and M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin film," Nature 384, 616 (1996).

N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
[CrossRef]

Opt. Eng.

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

Opt. Exp.

Y. Huang, Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Exp. 15, 6414-6419 (2007).
[CrossRef]

Opt. Lett.

Optik

A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
[CrossRef]

Photon.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, "Optical properties of a three-dimensional silicon square spiral photonic crystal," Photon. 1, 37-42 (2003).

Polymer

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

Rev. Sci. Instrum.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, "Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure," Rev. Sci. Instrum. 75, 1089-1097 (2004).
[CrossRef]

Sensors and Actuators B

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Nanostructured gradient index optical filter for high-speed humidity sensing," Sensors and Actuators B,  120, 213-219 (2006).
[CrossRef]

Other

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of glancing angle deposition.

Fig. 2.
Fig. 2.

LCP reflectance spectra at various glancing angles: (a) helical TiO2 films with 5 turns, (b) helical ZrO2 films with 5 turns, and (c) helical Ta2O5 films with 5 turns.

Fig. 3.
Fig. 3.

Reflectance spectra of 5-turns helical TiO2 films as the air to vacuum: (a) left-handed and (b) right-handed.

Fig. 4.
Fig. 4.

The wideband circular Bragg reflectors: (a) transmittance spectrum and (b) LCP reflectance spectrum.

Fig. 5.
Fig. 5.

The three band circular Bragg reflectors with different deposition rates: (a) transmittance spectrum and (b) LCP reflectance spectrum.

Fig. 6.
Fig. 6.

Cross-sectional SEM images of TiO2 helical films: (a) broad-band circular Bragg reflector, (b) three band circular Bragg reflectors, (c) 5-turns left handed TiO2 helical films and (d) 5-turns right handed TiO2 helical films.

Metrics