Abstract

In this paper a novel optical generation approach for binary-phase-coded, direct-sequence ultra-wideband (UWB) signals is experimentally demonstrated. Our system consists of a laser array, a polarization modulator (PolM), a fiber Bragg grating (FBG), a length of single mode fiber, and a photo detector (PD). The FBG, designed based on the superimposed, chirped grating, is used as the multi-channel frequency discriminator. The input electronic Gaussian pulse is modulated on the optical carrier by the PolM and then converted into UWB monocycle or doublet pulses sequence by the multi-channel frequency discriminator. The PolM is used so that the desired binary phase code pattern could be simply selected by adjusting the polarization state of each laser, rather than tuning the laser wavelengths. The desired UWB shape, monocycle or doublet, could be selected by tuning the FBG. Based on our proposed approach, four-chip, binary-phase-coded, DS-UWB sequences with different pulse shapes and code patterns are experimentally demonstrated. The impact of the fiber dispersion on the generated UWB pulses is also discussed in our paper.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
    [CrossRef]
  2. H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication (Hoboken, NJ: Wiley, 2006).
    [CrossRef]
  3. W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
    [CrossRef]
  4. Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, "Performance evaluation for UWB signal transmissions in the distributed multi-cell environment using ROF technology," in Proceedings of IEEE Conference on International Topical Meeting on Microwave Photonics (2005), pp.173-176.
  5. H. Chen, M. Chen, Z. Jian, and S. Xie, "UWB monocycle and doublet pulses generation in optical domain," in Proceedings of IEEE Conference on International Topical Meeting on Microwave Photonics (2007), pp.145-148.
  6. H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
    [CrossRef]
  7. J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
    [CrossRef]
  8. S. Xiao and A. M. Weiner, "Coherent Fourier transform electrical pulse shaping," Opt. Express 14, 3073-3082 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-3073.
    [CrossRef] [PubMed]
  9. C. Wang, F. Zeng, and J. Yao, "All-Fiber Ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
    [CrossRef]
  10. F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
    [CrossRef]
  11. F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
    [CrossRef]
  12. Q. Wang and J. P. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14667.
    [CrossRef] [PubMed]
  13. Y. Dai and J. Yao, "An Approach to Optical Generation and Distribution of Binary Phase Coded Direct Sequence Ultra-Wideband Signals," in Proceedings of IEEE Conference on International Topical Meeting on Microwave Photonics (2007), pp.173-176.
  14. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
    [CrossRef]
  15. R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
    [CrossRef]

2007 (3)

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, "All-Fiber Ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Q. Wang and J. P. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14667.
[CrossRef] [PubMed]

2006 (4)

S. Xiao and A. M. Weiner, "Coherent Fourier transform electrical pulse shaping," Opt. Express 14, 3073-3082 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-3073.
[CrossRef] [PubMed]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

2005 (2)

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

2004 (1)

R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Capmany, J.

Castonguay, I.

R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

Chen, H.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Chen, M.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Doucet, S.

R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

La Rochelle, S.

R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

Lin, W. P.

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

McKinney, J. D.

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

Ortega, B.

Pastor, D.

Qiu, C.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Sales, S.

Slavik, R.

R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

Wang, C.

C. Wang, F. Zeng, and J. Yao, "All-Fiber Ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Wang, Q.

Weiner, A. M.

S. Xiao and A. M. Weiner, "Coherent Fourier transform electrical pulse shaping," Opt. Express 14, 3073-3082 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-3073.
[CrossRef] [PubMed]

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

Xiao, S.

Xie, S.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Yao, J.

C. Wang, F. Zeng, and J. Yao, "All-Fiber Ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

Yao, J. P.

Zeng, F.

C. Wang, F. Zeng, and J. Yao, "All-Fiber Ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, "All-Fiber Ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

F. Zeng and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

R. Slavik, I. Castonguay, S. La Rochelle, and S. Doucet, "Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure," IEEE Photon. Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (4)

Y. Dai and J. Yao, "An Approach to Optical Generation and Distribution of Binary Phase Coded Direct Sequence Ultra-Wideband Signals," in Proceedings of IEEE Conference on International Topical Meeting on Microwave Photonics (2007), pp.173-176.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, "Performance evaluation for UWB signal transmissions in the distributed multi-cell environment using ROF technology," in Proceedings of IEEE Conference on International Topical Meeting on Microwave Photonics (2005), pp.173-176.

H. Chen, M. Chen, Z. Jian, and S. Xie, "UWB monocycle and doublet pulses generation in optical domain," in Proceedings of IEEE Conference on International Topical Meeting on Microwave Photonics (2007), pp.145-148.

H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication (Hoboken, NJ: Wiley, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Phase coding DS-UWB sequence generator.

Fig. 2.
Fig. 2.

(a) Phase coded UWB sequence generator based on PolM and FBG-based multi-channel filter. Phase coding is realized by adjusting the polarization state of each laser. The lasers are CW lasers and polarization-modulated at the PolM by Gaussian pulses. (b) Monocycle and doublet sequence can be generated by tuning the spectrum of the FBG.

Fig. 3.
Fig. 3.

The measured spectrum of the superimposed chirped FBG.

Fig. 4.
Fig. 4.

Phase coded monocycle (up) and doublet (down) sequences with different code patterns are measured in time domain. The code patterns from (a) to (c) are {0 0 0 0}, {0 π π 0}, and {0 0 π 0}, respectively.

Fig. 5.
Fig. 5.

Spectra of generated monocycle (left) and doublet (right) pulses.

Fig. 6.
Fig. 6.

The distortion of generated monocycle pulse because of the dispersion of fiber. The monocycle pulse is changed to a doublet-like pulse when the fiber is lengthened.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 n eff Δ L

Metrics