Abstract

The design, simulation, fabrication and characterization of 3-D modulable micro-optical system based on poly-dimethilsiloxane (PDMS) are presented in this paper. This system consists on two uncoupled PDMS lenses with different diameter (2 and 10 µm). Under stretching conditions, the dimensions of the small lens are not modified, whereas the geometry of the bigger lens is shifted from spherical to elliptical. A combination of different technologies is used to fabricate this microsystem: silicon, polymer and soft-lithography microfabrication techniques. This combination allows obtaining structures with a simple and mass production technology. Experimental results confirm the predicted numerical simulations, showing that, when the structure is under stretching conditions, the first focus is virtually invariable whereas the second focus becomes a Sturm zone.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A high numerical aperture, polymer-based, planar microlens array

Anurag Tripathi, Trushal Vijaykumar Chokshi, and Nikos Chronis
Opt. Express 17(22) 19908-19918 (2009)

Microlenses with defined contour shapes

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger
Opt. Express 19(19) 18665-18670 (2011)

Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques

Jorge Albero, Lukasz Nieradko, Christophe Gorecki, Heidi Ottevaere, Virginia Gomez, Hugo Thienpont, Juha Pietarinen, Birgit Päivänranta, and Nicolas Passilly
Opt. Express 17(8) 6283-6292 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
    [Crossref]
  2. T.K. Shin, J.R. Ho, and J.W.J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078–2080 (2004).
    [Crossref]
  3. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip 3, 40–45 (2003).
    [Crossref]
  4. A. Tate, T. Suzuki, and H. Tsuda, “Multistage polymeric lens structures integrated into silica waveguides,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6288–6293 (2006).
    [Crossref]
  5. C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).
    [Crossref]
  6. M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
    [Crossref]
  7. T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes,” J. Microelectromech. Syst. 13, 190–199 (2004).
    [Crossref]
  8. W.X. Yu and X.C. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11, 2253–2258 (2003).
    [Crossref] [PubMed]
  9. A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
    [Crossref]
  10. F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik 113, 391–404 (2002).
    [Crossref]
  11. Z.D. Popovic, R.A. Sprague, and G.A.N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [Crossref] [PubMed]
  12. S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
    [Crossref]
  13. X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators A 97, 428–433 (2002).
    [Crossref]
  14. M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
    [Crossref]
  15. P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
    [Crossref]
  16. J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
    [Crossref]
  17. M. Feldmann, S. Bütefish, and S. Büttgenbach, “A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS,” IEEE: Cannes-Mandelieu, 2003.
  18. N. Chronis, G.L. Liu, K.H. Jeong, and L.P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
    [Crossref] [PubMed]
  19. K.H. Jeong, G.L. Liu, N. Chronis, and L.P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2004.
    [Crossref] [PubMed]
  20. Y.N. Xia and G.M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [Crossref]
  21. K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. and Microeng. 12, 1–6 (2002).
    [Crossref]
  22. R. Panergo, C. S. Huang, C. S. Liu, P. G. Reinhall, and W. C. Wang, “Resonant polymeric waveguide cantilever integrated for optical scanning,” J. Lightwave Technol. 25, 850–860 (2007).
    [Crossref]
  23. A. Llobera, R. Wilke, and S. Buttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip. 4, 24–27 (2004).
    [Crossref] [PubMed]
  24. J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
    [Crossref]
  25. M. Katz, Introduction to geometrical optics (World Scintific1994).
  26. D.F.G. Gallagher and T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.,” in Proc. SPIE 4987, 69–82 (2003).
    [Crossref]
  27. G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photon. Technol. Lett. 5, 554–557 (1993).
    [Crossref]
  28. G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
    [Crossref]
  29. F. Laermer and A. Schilp, “Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape” 1992.
  30. F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

2007 (2)

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

R. Panergo, C. S. Huang, C. S. Liu, P. G. Reinhall, and W. C. Wang, “Resonant polymeric waveguide cantilever integrated for optical scanning,” J. Lightwave Technol. 25, 850–860 (2007).
[Crossref]

2006 (2)

A. Tate, T. Suzuki, and H. Tsuda, “Multistage polymeric lens structures integrated into silica waveguides,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6288–6293 (2006).
[Crossref]

J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
[Crossref]

2005 (1)

A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
[Crossref]

2004 (4)

K.H. Jeong, G.L. Liu, N. Chronis, and L.P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2004.
[Crossref] [PubMed]

A. Llobera, R. Wilke, and S. Buttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip. 4, 24–27 (2004).
[Crossref] [PubMed]

T.K. Shin, J.R. Ho, and J.W.J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078–2080 (2004).
[Crossref]

T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes,” J. Microelectromech. Syst. 13, 190–199 (2004).
[Crossref]

2003 (7)

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip 3, 40–45 (2003).
[Crossref]

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

D.F.G. Gallagher and T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.,” in Proc. SPIE 4987, 69–82 (2003).
[Crossref]

N. Chronis, G.L. Liu, K.H. Jeong, and L.P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
[Crossref] [PubMed]

W.X. Yu and X.C. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11, 2253–2258 (2003).
[Crossref] [PubMed]

2002 (3)

F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators A 97, 428–433 (2002).
[Crossref]

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. and Microeng. 12, 1–6 (2002).
[Crossref]

2000 (1)

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).
[Crossref]

1998 (3)

S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

1997 (1)

J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
[Crossref]

1993 (1)

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photon. Technol. Lett. 5, 554–557 (1993).
[Crossref]

1988 (1)

Aegerter, M.A.

S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Aoki, S.

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

Bausells, J.

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Bergveld, P.

J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
[Crossref]

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Bourouina, T.

T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes,” J. Microelectromech. Syst. 13, 190–199 (2004).
[Crossref]

Bütefish, S.

M. Feldmann, S. Bütefish, and S. Büttgenbach, “A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS,” IEEE: Cannes-Mandelieu, 2003.

Buttgenbach, S.

A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
[Crossref]

A. Llobera, R. Wilke, and S. Buttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip. 4, 24–27 (2004).
[Crossref] [PubMed]

Büttgenbach, S.

M. Feldmann, S. Bütefish, and S. Büttgenbach, “A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS,” IEEE: Cannes-Mandelieu, 2003.

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip 3, 40–45 (2003).
[Crossref]

Cheng, J.W.J.

T.K. Shin, J.R. Ho, and J.W.J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078–2080 (2004).
[Crossref]

Chronis, N.

Connell, G.A.N.

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

David, C.

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).
[Crossref]

Feldmann, M.

M. Feldmann, S. Bütefish, and S. Büttgenbach, “A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS,” IEEE: Cannes-Mandelieu, 2003.

Felici, T.P.

D.F.G. Gallagher and T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.,” in Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip 3, 40–45 (2003).
[Crossref]

Fujita, H.

T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes,” J. Microelectromech. Syst. 13, 190–199 (2004).
[Crossref]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip 3, 40–45 (2003).
[Crossref]

Funk, K.

F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

Gallagher, D.F.G.

D.F.G. Gallagher and T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.,” in Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Gijs, M.A.M.

J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
[Crossref]

Glebov, A.L.

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

Hanada, K.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. and Microeng. 12, 1–6 (2002).
[Crossref]

Herzig, H.P.

P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Ho, J.R.

T.K. Shin, J.R. Ho, and J.W.J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078–2080 (2004).
[Crossref]

Hosokawa, K.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. and Microeng. 12, 1–6 (2002).
[Crossref]

Houlihan, F.M.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Huang, C. S.

Huang, L.D.

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

Husser, A.

P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Jeong, K.H.

Johnson, D.W.

A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
[Crossref]

Katz, M.

M. Katz, Introduction to geometrical optics (World Scintific1994).

Kolodner, P.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Kotani, K.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

Kunnavakkam, M.V.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Laermer, F.

F. Laermer and A. Schilp, “Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape” 1992.

F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

Lee, L.P.

Lee, M.G.

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

Liddle, J.A.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Lin, L.W.

X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators A 97, 428–433 (2002).
[Crossref]

Liu, C. S.

Liu, G.L.

Llobera, A.

A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
[Crossref]

A. Llobera, R. Wilke, and S. Buttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip. 4, 24–27 (2004).
[Crossref] [PubMed]

Lotters, J.C.

J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
[Crossref]

Maeda, R.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. and Microeng. 12, 1–6 (2002).
[Crossref]

Maeno, Y.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

Masuzawa, T.

T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes,” J. Microelectromech. Syst. 13, 190–199 (2004).
[Crossref]

Nalamasu, O.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Nolting, H. P.

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photon. Technol. Lett. 5, 554–557 (1993).
[Crossref]

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

O’Neill, F.T.

F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

Offenberg, M.

F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Olthuis, W.

J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
[Crossref]

Orhan, J.B.

J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
[Crossref]

Pan, L.W.

X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators A 97, 428–433 (2002).
[Crossref]

Panergo, R.

Parashar, V.K.

J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
[Crossref]

Perez-Murano, F.

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Plaza, J.A.

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Popovic, Z.D.

Reinhall, P. G.

Rogers, J.A.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Sanchez, A.

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Sasaki, H.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

Sayah, A.

J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
[Crossref]

Schilp, A.

F. Laermer and A. Schilp, “Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape” 1992.

F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

Schlax, M.

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

Shen, X.J.

X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators A 97, 428–433 (2002).
[Crossref]

Sheridan, J.T.

F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

Shimura, D.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

Shin, T.K.

T.K. Shin, J.R. Ho, and J.W.J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078–2080 (2004).
[Crossref]

Sprague, R.A.

Suzuki, T.

A. Tate, T. Suzuki, and H. Tsuda, “Multistage polymeric lens structures integrated into silica waveguides,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6288–6293 (2006).
[Crossref]

Sztefka, G.

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photon. Technol. Lett. 5, 554–557 (1993).
[Crossref]

Takamori, T.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

Tate, A.

A. Tate, T. Suzuki, and H. Tsuda, “Multistage polymeric lens structures integrated into silica waveguides,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6288–6293 (2006).
[Crossref]

Tsuda, H.

A. Tate, T. Suzuki, and H. Tsuda, “Multistage polymeric lens structures integrated into silica waveguides,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6288–6293 (2006).
[Crossref]

Uekawa, M.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

Veltink, P.H.

J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
[Crossref]

Villanueva, G.

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Wang, W. C.

Whitesides, G.M.

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Wilke, R.

A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
[Crossref]

A. Llobera, R. Wilke, and S. Buttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip. 4, 24–27 (2004).
[Crossref] [PubMed]

Xia, Y.N.

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Yokouchi, K.

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

Yu, W.X.

Yuan, X.C.

Zinoviev, K.

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, and J.A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152–1154 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (4)

T.K. Shin, J.R. Ho, and J.W.J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078–2080 (2004).
[Crossref]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15, 945–947 (2003).
[Crossref]

A. Llobera, R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer microlenses with modified micromolding in capillaries (MIMIC) technology,” IEEE Photon. Technol. Lett. 17, 2628–2630 (2005).
[Crossref]

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photon. Technol. Lett. 5, 554–557 (1993).
[Crossref]

in Proc. SPIE (1)

D.F.G. Gallagher and T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.,” in Proc. SPIE 4987, 69–82 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes,” J. Microelectromech. Syst. 13, 190–199 (2004).
[Crossref]

J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and characterization of threedimensional microlens arrays in sol-gel glass,” J. Microelectromech. Syst. 15, 1159–1164 (2006).
[Crossref]

J. Micromech. and Microeng. (2)

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. and Microeng. 12, 1–6 (2002).
[Crossref]

J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. and Microeng. 7, 145–147 (1997).
[Crossref]

Journal of Microlithography Microfabrication and Microsystems (1)

A.L. Glebov, L.D. Huang, S. Aoki, M.G. Lee, and K. Yokouchi, “Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology,” Journal of Microlithography Microfabrication and Microsystems 2, 309–318 (2003).
[Crossref]

Journal Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M.A. Aegerter, “Refractive microlens fabrication by ink-jet process,” Journal Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers (1)

A. Tate, T. Suzuki, and H. Tsuda, “Multistage polymeric lens structures integrated into silica waveguides,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6288–6293 (2006).
[Crossref]

Lab Chip. (1)

A. Llobera, R. Wilke, and S. Buttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip. 4, 24–27 (2004).
[Crossref] [PubMed]

Lab on a Chip (1)

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip 3, 40–45 (2003).
[Crossref]

Microelectron. Eng. (2)

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).
[Crossref]

G. Villanueva, J.A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, “DRIE based novel technique for AFM probes fabrication,” Microelectron. Eng. 84, 1132–1135 (2007).
[Crossref]

Opt. Eng. (1)

P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique for replication of microoptical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Opt. Express (3)

Optik (1)

F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

Sens. Actuators A (1)

X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators A 97, 428–433 (2002).
[Crossref]

Other (4)

M. Feldmann, S. Bütefish, and S. Büttgenbach, “A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS,” IEEE: Cannes-Mandelieu, 2003.

F. Laermer and A. Schilp, “Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape” 1992.

F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

M. Katz, Introduction to geometrical optics (World Scintific1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Drawing of the proposed micro-lenses and the output light behaviour without stretching. (b) Picture of the micro-lenses and output light behaviour when an actuation force is applied. In the last situation, Ll acts like an elliptic lens and the interval of Sturm is obtained.

Fig. 2.
Fig. 2.

Simulated spatial power distribution of (a) the Sl focus and (b) the Ll focus.

Fig. 3.
Fig. 3.

Numerically simulated spatial power distribution when the system is 10% stretched of the Sl focus on (a) the x-axis and (b) the y-axis.

Fig. 4.
Fig. 4.

Simulated spatial power distribution when the system is 10% stretched of the HLF, over (a) the x-axis and (b) the y-axis; of the CLC, over (c) the x-axis and (d) the y-axis; and of the VLF, over (e) the x-axis and (f) the y-axis.

Fig. 5.
Fig. 5.

Schematic picture of the fabrication technology of the PDMS-based micro-optical systems. (a) Definition of SiO2 mask for the DRIE etching. (b) Isotropic DRIE etching conditions. (c) Directional DRIE etching conditions. (d) After the elimination of SiO2 mask, a new SiO2 sacrificial-layer is grown by wet thermal oxidation. (e) A 150-µm- thick SU-8 layer is spun over the defined wafer. (f) After the thermal treatments and the UV exposure, the SU-8 master is released by wet etching of the SiO2 sacrificial-layer. (g) Pre-polymer PDMS is cast over the SU-8 master. (h) After a thermal treatment the PDMS structure is mechanically released.

Fig. 6.
Fig. 6.

(a) SEM image of a 3×3 PDMS micro-lenses matrix on face view and (b) tilted view. (c) Profile of a micro-optical system obtained by confocal microscopic techniques.

Fig. 7.
Fig. 7.

Experimental set up for the optical characterization

Fig. 8.
Fig. 8.

Experimental spatial distribution of the output light power for a nonstretched lens. Inlets show the original CCD images. (a) First focus. (b) Second focus.

Fig. 9.
Fig. 9.

Reconstruction of light power on space for a stretched lens. Inlets show the experimental CCD images. (a) First focus. (b) Horizontal line focus. (c) Circle of least confusion. (d) Vertical line focus.

Fig. 10.
Fig. 10.

Spatial distribution of first focus for (a) a non-stretched and (b) a 10% stretched matrix of 3×3 microlenses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ¯ ( x , y , z ) = m Ɛ ¯ m ( x , y ) · ( c m + . e i β m z + c m . e i β m z )
H ¯ ( x , y , z ) = m ¯ m ( x , y ) · ( c m + . e i β m z + c m . e i β m z )

Metrics