Abstract

The design, simulation, fabrication and characterization of 3-D modulable micro-optical system based on poly-dimethilsiloxane (PDMS) are presented in this paper. This system consists on two uncoupled PDMS lenses with different diameter (2 and 10 µm). Under stretching conditions, the dimensions of the small lens are not modified, whereas the geometry of the bigger lens is shifted from spherical to elliptical. A combination of different technologies is used to fabricate this microsystem: silicon, polymer and soft-lithography microfabrication techniques. This combination allows obtaining structures with a simple and mass production technology. Experimental results confirm the predicted numerical simulations, showing that, when the structure is under stretching conditions, the first focus is virtually invariable whereas the second focus becomes a Sturm zone.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
    [CrossRef]
  2. T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
    [CrossRef]
  3. S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003).
    [CrossRef]
  4. A. Tate, T. Suzuki, and H. Tsuda, "Multistage polymeric lens structures integrated into silica waveguides," Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications and Review Papers 45, 6288-6293 (2006).
    [CrossRef]
  5. C. David, "Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements," Microelectron. Eng. 53,677-680 (2000).
    [CrossRef]
  6. M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
    [CrossRef]
  7. T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004).
    [CrossRef]
  8. W. X. Yu and X. C. Yuan, "UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask," Opt. Express 11, 2253-2258 (2003).
    [CrossRef] [PubMed]
  9. A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
    [CrossRef]
  10. F. T. O'Neill and J. T. Sheridan, "Photoresist reflow method of microlens production Part I: Background and experiments," Optik 113, 391-404 (2002).
    [CrossRef]
  11. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 27, 1281-1284 (1988).
    [CrossRef] [PubMed]
  12. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
    [CrossRef]
  13. X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002).
    [CrossRef]
  14. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
    [CrossRef]
  15. P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
    [CrossRef]
  16. J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
    [CrossRef]
  17. M. Feldmann, S. Bütefish, and S. Büttgenbach, "A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS," IEEE: Cannes-Mandelieu, 2003.
  18. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
    [CrossRef] [PubMed]
  19. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 2004.
    [CrossRef] [PubMed]
  20. Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    [CrossRef]
  21. K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002).
    [CrossRef]
  22. R. Panergo, C. S. Huang, C. S. Liu, P. G. Reinhall, and W. C. Wang, "Resonant polymeric waveguide cantilever integrated for optical scanning," J. Lightwave Technol. 25, 850-860 (2007).
    [CrossRef]
  23. A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004).
    [CrossRef] [PubMed]
  24. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
    [CrossRef]
  25. M. Katz, Introduction to Geometrical Optics (World Scintific 1994).
  26. D. F. G. Gallagher and T. P. Felici, "Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.," in Proc. SPIE 4987, 69-82 (2003).
    [CrossRef]
  27. G. Sztefka and H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993).
    [CrossRef]
  28. G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
    [CrossRef]
  29. F. Laermer and A. Schilp, "Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape," 1992.
  30. F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

2007 (2)

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

R. Panergo, C. S. Huang, C. S. Liu, P. G. Reinhall, and W. C. Wang, "Resonant polymeric waveguide cantilever integrated for optical scanning," J. Lightwave Technol. 25, 850-860 (2007).
[CrossRef]

2006 (1)

J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
[CrossRef]

2005 (1)

A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
[CrossRef]

2004 (4)

K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 2004.
[CrossRef] [PubMed]

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004).
[CrossRef]

A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004).
[CrossRef] [PubMed]

2003 (6)

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
[CrossRef] [PubMed]

W. X. Yu and X. C. Yuan, "UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask," Opt. Express 11, 2253-2258 (2003).
[CrossRef] [PubMed]

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003).
[CrossRef]

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

2002 (3)

X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002).
[CrossRef]

K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002).
[CrossRef]

F. T. O'Neill and J. T. Sheridan, "Photoresist reflow method of microlens production Part I: Background and experiments," Optik 113, 391-404 (2002).
[CrossRef]

2000 (1)

C. David, "Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements," Microelectron. Eng. 53,677-680 (2000).
[CrossRef]

1998 (3)

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
[CrossRef]

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
[CrossRef]

Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

1997 (1)

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
[CrossRef]

1993 (1)

G. Sztefka and H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993).
[CrossRef]

1988 (1)

Aegerter, M. A.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
[CrossRef]

Aoki, S.

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

Bausells, J.

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Bergveld, P.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
[CrossRef]

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
[CrossRef]

Bourouina, T.

T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004).
[CrossRef]

Buttgenbach, S.

A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
[CrossRef]

A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004).
[CrossRef] [PubMed]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003).
[CrossRef]

Cheng, J. W. J.

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Chronis, N.

Connell, G. A. N.

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
[CrossRef]

David, C.

C. David, "Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements," Microelectron. Eng. 53,677-680 (2000).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003).
[CrossRef]

Fujita, H.

T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004).
[CrossRef]

S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003).
[CrossRef]

Gijs, M. A. M.

J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
[CrossRef]

Glebov, A. L.

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

Hanada, K.

K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002).
[CrossRef]

Herzig, H. P.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
[CrossRef]

Ho, J. R.

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Hosokawa, K.

K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002).
[CrossRef]

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Huang, C. S.

Huang, L. D.

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

Husser, A.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
[CrossRef]

Jeong, K. H.

Johnson, D. W.

A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
[CrossRef]

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Kotani, K.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Lee, L. P.

Lee, M. G.

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Lin, L. W.

X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002).
[CrossRef]

Liu, C. S.

Liu, G. L.

Llobera, A.

A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
[CrossRef]

A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004).
[CrossRef] [PubMed]

Lotters, J. C.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
[CrossRef]

Maeda, R.

K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002).
[CrossRef]

Maeno, Y.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

Masuzawa, T.

T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004).
[CrossRef]

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Nolting, H. P.

G. Sztefka and H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993).
[CrossRef]

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
[CrossRef]

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
[CrossRef]

Olthuis, W.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
[CrossRef]

O'Neill, F. T.

F. T. O'Neill and J. T. Sheridan, "Photoresist reflow method of microlens production Part I: Background and experiments," Optik 113, 391-404 (2002).
[CrossRef]

Orhan, J. B.

J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
[CrossRef]

Pan, L. W.

X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002).
[CrossRef]

Panergo, R.

Parashar, V. K.

J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
[CrossRef]

Perez-Murano, F.

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
[CrossRef]

Plaza, J. A.

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Popovic, Z. D.

Reinhall, P. G.

Rogers, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Sanchez, A.

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Sasaki, H.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

Sayah, A.

J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
[CrossRef]

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Shen, X. J.

X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002).
[CrossRef]

Sheridan, J. T.

F. T. O'Neill and J. T. Sheridan, "Photoresist reflow method of microlens production Part I: Background and experiments," Optik 113, 391-404 (2002).
[CrossRef]

Shimura, D.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

Shin, T. K.

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Sprague, R. A.

Sztefka, G.

G. Sztefka and H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993).
[CrossRef]

Takamori, T.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

Uekawa, M.

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

Veltink, P. H.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
[CrossRef]

Villanueva, G.

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Wang, W. C.

Whitesides, G. M.

Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Wilke, A. R.

A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
[CrossRef]

Wilke, R.

A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004).
[CrossRef] [PubMed]

Xia, Y. N.

Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Yokouchi, K.

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

Yu, W. X.

Yuan, X. C.

Zinoviev, K.

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003).
[CrossRef]

A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005).
[CrossRef]

G. Sztefka and H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004).
[CrossRef]

J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006).
[CrossRef]

J. Microlithogr. Microfabr. Microsyst. (1)

A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003).
[CrossRef]

J. Micromech. and Microeng. (2)

K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002).
[CrossRef]

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998).
[CrossRef]

Lab Chip. (1)

A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004).
[CrossRef] [PubMed]

Lab on a Chip (1)

S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003).
[CrossRef]

Microelectron. Eng. (2)

C. David, "Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements," Microelectron. Eng. 53,677-680 (2000).
[CrossRef]

G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007).
[CrossRef]

Opt. Eng. (1)

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998).
[CrossRef]

Opt. Express (3)

Optik (1)

F. T. O'Neill and J. T. Sheridan, "Photoresist reflow method of microlens production Part I: Background and experiments," Optik 113, 391-404 (2002).
[CrossRef]

Sens. Actuators A (1)

X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002).
[CrossRef]

Other (6)

M. Feldmann, S. Bütefish, and S. Büttgenbach, "A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS," IEEE: Cannes-Mandelieu, 2003.

A. Tate, T. Suzuki, and H. Tsuda, "Multistage polymeric lens structures integrated into silica waveguides," Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications and Review Papers 45, 6288-6293 (2006).
[CrossRef]

F. Laermer and A. Schilp, "Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape," 1992.

F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

M. Katz, Introduction to Geometrical Optics (World Scintific 1994).

D. F. G. Gallagher and T. P. Felici, "Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.," in Proc. SPIE 4987, 69-82 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Drawing of the proposed micro-lenses and the output light behaviour without stretching. (b) Picture of the micro-lenses and output light behaviour when an actuation force is applied. In the last situation, Ll acts like an elliptic lens and the interval of Sturm is obtained.

Fig. 2.
Fig. 2.

Simulated spatial power distribution of (a) the Sl focus and (b) the Ll focus.

Fig. 3.
Fig. 3.

Numerically simulated spatial power distribution when the system is 10% stretched of the Sl focus on (a) the x-axis and (b) the y-axis.

Fig. 4.
Fig. 4.

Simulated spatial power distribution when the system is 10% stretched of the HLF, over (a) the x-axis and (b) the y-axis; of the CLC, over (c) the x-axis and (d) the y-axis; and of the VLF, over (e) the x-axis and (f) the y-axis.

Fig. 5.
Fig. 5.

Schematic picture of the fabrication technology of the PDMS-based micro-optical systems. (a) Definition of SiO2 mask for the DRIE etching. (b) Isotropic DRIE etching conditions. (c) Directional DRIE etching conditions. (d) After the elimination of SiO2 mask, a new SiO2 sacrificial-layer is grown by wet thermal oxidation. (e) A 150-µm- thick SU-8 layer is spun over the defined wafer. (f) After the thermal treatments and the UV exposure, the SU-8 master is released by wet etching of the SiO2 sacrificial-layer. (g) Pre-polymer PDMS is cast over the SU-8 master. (h) After a thermal treatment the PDMS structure is mechanically released.

Fig. 6.
Fig. 6.

(a) SEM image of a 3×3 PDMS micro-lenses matrix on face view and (b) tilted view. (c) Profile of a micro-optical system obtained by confocal microscopic techniques.

Fig. 7.
Fig. 7.

Experimental set up for the optical characterization

Fig. 8.
Fig. 8.

Experimental spatial distribution of the output light power for a nonstretched lens. Inlets show the original CCD images. (a) First focus. (b) Second focus.

Fig. 9.
Fig. 9.

Reconstruction of light power on space for a stretched lens. Inlets show the experimental CCD images. (a) First focus. (b) Horizontal line focus. (c) Circle of least confusion. (d) Vertical line focus.

Fig. 10.
Fig. 10.

Spatial distribution of first focus for (a) a non-stretched and (b) a 10% stretched matrix of 3×3 microlenses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ¯ ( x , y , z ) = m Ɛ ¯ m ( x , y ) · ( c m + . e i β m z + c m . e i β m z )
H ¯ ( x , y , z ) = m ¯ m ( x , y ) · ( c m + . e i β m z + c m . e i β m z )

Metrics