Abstract

Surface plasmon polaritons (SPPs) Bragg reflector with more excellent optical properties are investigated numerically. By introducing a finite array of periodic grooves on the two surfaces of metal-insulator-metal (MIM) waveguide, we fulfill the periodical changes of effective refractive index, which leads to the photonic band gap (PBG). And it has been further widened by inserting a dielectric material with higher refractive index in the waveguide with narrow slit width. Finite difference time domain (FDTD) simulation confirms the widened bandgap. In addition, a SPP nanocavity is introduced by breaking the periodicity of our proposed structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
    [CrossRef] [PubMed]
  3. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  4. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  5. H. Dilbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408 (2004).
    [CrossRef]
  6. A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008).
    [CrossRef] [PubMed]
  7. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996).
    [CrossRef] [PubMed]
  8. H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
    [CrossRef]
  9. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
    [CrossRef] [PubMed]
  10. J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
    [CrossRef]
  11. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45 (2008).
    [CrossRef] [PubMed]
  12. B. Wang and G. P. Wang, "Plasmon Bragg reflector and nanocavities on flat metallic surfaces," App. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  13. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  14. L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006).
    [CrossRef]
  15. A. Houseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318 (2006).
    [CrossRef]
  16. A. Houseini, H. Nejati, and Y. Massoud,"Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475 (2008).
    [CrossRef]
  17. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants and Solids (C Academic, Orlando, Fla, 1985).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston. 2000).
  20. R. Muller, C. Ropers and C. Lienau, "Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate," Opt. Express 12, 5067 (2004).
    [CrossRef] [PubMed]

2008 (3)

A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45 (2008).
[CrossRef] [PubMed]

A. Houseini, H. Nejati, and Y. Massoud,"Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475 (2008).
[CrossRef]

2006 (5)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006).
[CrossRef]

A. Houseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318 (2006).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

2005 (1)

B. Wang and G. P. Wang, "Plasmon Bragg reflector and nanocavities on flat metallic surfaces," App. Phys. Lett. 87, 013107 (2005).
[CrossRef]

2004 (2)

2003 (2)

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

2001 (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

1996 (1)

C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

1969 (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Aussenegg, F. R.

H. Dilbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408 (2004).
[CrossRef]

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

Baudrion, A.-L.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
[CrossRef]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Bouhelier, A.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

Bruyant, A.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Dilbacher, H.

H. Dilbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408 (2004).
[CrossRef]

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969).
[CrossRef]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Hosseini, A.

A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef] [PubMed]

Houseini, A.

Hvanm, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

Kitson, C.

C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

Krenn, J. R.

H. Dilbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408 (2004).
[CrossRef]

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Kuipers, L.

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Leitner, A.

H. Dilbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408 (2004).
[CrossRef]

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Lienau, C.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Massoud, Y.

A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef] [PubMed]

A. Houseini, H. Nejati, and Y. Massoud,"Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475 (2008).
[CrossRef]

A. Houseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318 (2006).
[CrossRef]

Muller, R.

Nejati, H.

A. Houseini, H. Nejati, and Y. Massoud,"Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475 (2008).
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef] [PubMed]

Polman, A.

Ropers, C.

Sambles, J. R.

C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

Schider, G.

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Verhagen, E.

Wang, B.

B. Wang and G. P. Wang, "Plasmon Bragg reflector and nanocavities on flat metallic surfaces," App. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, "Plasmon Bragg reflector and nanocavities on flat metallic surfaces," App. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
[CrossRef]

Yu, X. -q.

L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zhou, L.

L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zhu, Y. -y.

L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006).
[CrossRef]

App. Phys. Lett. (4)

H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflector and nanocavities on flat metallic surfaces," App. Phys. Lett. 87, 013107 (2005).
[CrossRef]

L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants and Solids (C Academic, Orlando, Fla, 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston. 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Coloron line) (a) Scheme of two MIM waveguides with slit widths wA ,wB , respectively, produced by engraving two grooves on the surfaces of a single MIM waveguide. Here, dA and dB designate the waveguide thicknesses and the red section is metal. (b)–(c)Schematic of plasmonic Bragg reflector, alternately filled with air/air and SiO 2/air, respectively.

Fig. 2.
Fig. 2.

(Color on line) Variation of the real (a) and imaginary (b) parts of neff with wavelength for SPPs mode in the MIM waveguide. The two insets show the real and imaginary of neff as a function slit width. The thin solid, thin dash lines (red) and thick solid line (blue) correspond to the MIM waveguide with dielectric SiO 2 (εd =1.46), PSiO 2 (εd =1.23), air (εd =1.0), and the same slit width as Ref. 15, w=30nm. The thick dash-dot line presents MIM structure filled with air, w=100nm.

Fig. 3.
Fig. 3.

(Color on line)(a) Transmission spectrum of Bragg reflector consisting of 10 periods. The thin (black) line represent the MIM Bragg reflector with periodic changes of dielectric in the slit, width w=30nm. The thick red and blue solid lines stand for the structure shown in Fig. 1(b) and (c), respectively. The slit widths are wA =30nm,wB =100nm, respectively. (b) Bandgap as a function of slit width difference h=wB -wA , filled with dielectric in the narrow MIM waveguides (εd =2.5). The inset shows bandgap as a function of dielectric constants with h=70nm.(c)–(d) The field distribution of |Hz|2 in the reflector (Fig. 1(b)) at λ=1µm and λ=1.55µm, respectively. (e)–(f) |Hz|2 distribution for the cases shown in Fig. 1(b) and (c) at λ=1.3µm, respectively. The white thin lines give the profile of the reflector.

Fig. 4.
Fig. 4.

(Color on line)(a)Transmission of nanocavity with different dielectric/air alternately filled in the slits and grooves. The thick solid(blue), thin solid(black) and thick solid lines (red) correspond to the dielectric constants as εd =1.46,εd =1.23,εd =1.0, respectively. (b)–(c) The field distribution of |Hz|2 for defect mode at λ=1.55µm, filled with air/air, SiO 2/air, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε d p ε m k = 1 e kw 1 + e kw
k = k 0 ( β spp k 0 ) 2 ε d ; p = k 0 ( β spp k 0 ) 2 ε m
β spp = n eff k 0 = n eff 2 π λ

Metrics