Abstract

A new technique to implement a photonic microwave delay-line filter based on nonuniform tap spacing with arbitrary bandpass response is proposed and experimentally demonstrated. Being different from a regular photonic microwave delay-line filter where the taps are uniformly spaced, the proposed filter in this paper has nonuniformly-spaced taps. The key feature of this technique is that a photonics microwave delay-line filter with arbitrary bandpass response can be realized with only positive taps via nonuniform tap spacing. The use of the proposed technique to implement a flat-top bandpass filter is experimentally demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
    [CrossRef]
  2. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).
    [CrossRef]
  3. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
    [CrossRef]
  4. J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
    [CrossRef] [PubMed]
  5. E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
    [CrossRef]
  6. Y. Yan, F. Zeng, Q. Wang, and J. P. Yao, "Photonic microwave filter with negative coefficients based on cross polarization modulation in a semiconductor optical amplifier," OFC’ 07, OWU6 (2007).
  7. X. Wang and K. T. Chan, "Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fibre Bragg gratings," Electron. Lett. 36, 2001-2003 (2000).
    [CrossRef]
  8. S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
    [CrossRef]
  9. F. Zeng, J. Wang, and J. P. Yao, "All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings," Opt. Lett. 30, 2203-2205 (2005).
    [CrossRef] [PubMed]
  10. Q. Wang, J. P. Yao, and J. D. Bull, "Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer," IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
    [CrossRef]
  11. J. P. Yao and Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett. 19, 644-646 (2007).
    [CrossRef]
  12. J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
    [CrossRef]
  13. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
    [CrossRef]
  14. Y. Yan and J. P. Yao, "A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter," IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
    [CrossRef]
  15. B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Harmonic suppressed photonic microwave filter," J. Lightwave Technol. 21, 3150-3154 (2003).
    [CrossRef]
  16. Y. Dai and J. P. Yao, "Microwave pulse phase encoding using a photonic microwave delay-line filter," Opt. Lett. 32, 3486-3488 (2007).
    [CrossRef] [PubMed]
  17. F. Zeng and J. P. Yao, "All-optical bandpass microwave filter based on an electro-optic phase modulator," Opt. Express 12, 3814-3819 (2004).
    [CrossRef] [PubMed]

2007 (5)

Y. Yan, F. Zeng, Q. Wang, and J. P. Yao, "Photonic microwave filter with negative coefficients based on cross polarization modulation in a semiconductor optical amplifier," OFC’ 07, OWU6 (2007).

Q. Wang, J. P. Yao, and J. D. Bull, "Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer," IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[CrossRef]

J. P. Yao and Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett. 19, 644-646 (2007).
[CrossRef]

Y. Yan and J. P. Yao, "A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter," IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[CrossRef]

Y. Dai and J. P. Yao, "Microwave pulse phase encoding using a photonic microwave delay-line filter," Opt. Lett. 32, 3486-3488 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[CrossRef]

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).
[CrossRef]

2005 (4)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

F. Zeng, J. Wang, and J. P. Yao, "All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings," Opt. Lett. 30, 2203-2205 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

2000 (2)

X. Wang and K. T. Chan, "Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fibre Bragg gratings," Electron. Lett. 36, 2001-2003 (2000).
[CrossRef]

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

1997 (1)

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Bennion, I.

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Bull, J. D.

Q. Wang, J. P. Yao, and J. D. Bull, "Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer," IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[CrossRef]

Capmany, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

Chan, K. T.

X. Wang and K. T. Chan, "Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fibre Bragg gratings," Electron. Lett. 36, 2001-2003 (2000).
[CrossRef]

Chiang, S.

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Coppinger, F.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Corral, J. L.

Dai, Y.

Gambling, W. A.

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Jalali, B.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Li, S.

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Liu, Y.

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Loayssa, A.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[CrossRef]

Manzanedo, M. D.

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

Marti, J.

Martinez, A.

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

Minasian, R. A.

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[CrossRef]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

Ortega, B.

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

Polo, V.

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[CrossRef]

Sales, S.

Trinh, P. D.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Vidal, B.

Wang, J.

Wang, Q.

J. P. Yao and Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett. 19, 644-646 (2007).
[CrossRef]

Q. Wang, J. P. Yao, and J. D. Bull, "Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer," IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[CrossRef]

Y. Yan, F. Zeng, Q. Wang, and J. P. Yao, "Photonic microwave filter with negative coefficients based on cross polarization modulation in a semiconductor optical amplifier," OFC’ 07, OWU6 (2007).

Wang, X.

X. Wang and K. T. Chan, "Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fibre Bragg gratings," Electron. Lett. 36, 2001-2003 (2000).
[CrossRef]

Yan, Y.

Y. Yan and J. P. Yao, "A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter," IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[CrossRef]

Y. Yan, F. Zeng, Q. Wang, and J. P. Yao, "Photonic microwave filter with negative coefficients based on cross polarization modulation in a semiconductor optical amplifier," OFC’ 07, OWU6 (2007).

Yao, J. P.

Y. Yan, F. Zeng, Q. Wang, and J. P. Yao, "Photonic microwave filter with negative coefficients based on cross polarization modulation in a semiconductor optical amplifier," OFC’ 07, OWU6 (2007).

Y. Dai and J. P. Yao, "Microwave pulse phase encoding using a photonic microwave delay-line filter," Opt. Lett. 32, 3486-3488 (2007).
[CrossRef] [PubMed]

Y. Yan and J. P. Yao, "A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter," IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[CrossRef]

Q. Wang, J. P. Yao, and J. D. Bull, "Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer," IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[CrossRef]

J. P. Yao and Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett. 19, 644-646 (2007).
[CrossRef]

F. Zeng, J. Wang, and J. P. Yao, "All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings," Opt. Lett. 30, 2203-2205 (2005).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, "All-optical bandpass microwave filter based on an electro-optic phase modulator," Opt. Express 12, 3814-3819 (2004).
[CrossRef] [PubMed]

Yegnanarayanan, S.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Zeng, F.

Zhang, L.

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Electron. Lett. (2)

X. Wang and K. T. Chan, "Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fibre Bragg gratings," Electron. Lett. 36, 2001-2003 (2000).
[CrossRef]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, "Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter," Electron. Lett. 41, 921-922 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[CrossRef]

Y. Yan and J. P. Yao, "A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter," IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[CrossRef]

S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Q. Wang, J. P. Yao, and J. D. Bull, "Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer," IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[CrossRef]

J. P. Yao and Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett. 19, 644-646 (2007).
[CrossRef]

E. H. W. Chan and R. A. Minasian, "Sagnac-loop-based equivalent negative tap photonic notch filter," IEEE Photon. Technol. Lett. 17, 1740-1742 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microw. Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

J. Lightw. Technol. (1)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

J. Lightwave Technol. (1)

OFC (1)

Y. Yan, F. Zeng, Q. Wang, and J. P. Yao, "Photonic microwave filter with negative coefficients based on cross polarization modulation in a semiconductor optical amplifier," OFC’ 07, OWU6 (2007).

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of the time-delay-based phase shift. If a signal has a narrow bandwidth with a non-zero central frequency, a time delay would generate an equivalent phase shift.

Fig. 2.
Fig. 2.

Dotted line: the frequency response of the regular photonic microwave delay-line filter with true positive and negative coefficients. Dash-dot line: the frequency response of the PM-IM conversion. Solid line: the frequency response of the nonuniformly-spaced photonics microwave delay-line filter.

Fig. 3.
Fig. 3.

Experimental setup for the nonuniformly-spaced photonics microwave delay-line filter.

Fig. 4.
Fig. 4.

(a) The measured PM-IM conversion profile (dash-dot line) and the measured frequency response of the nonuniformly-spaced photonic microwave delay-line filter (solid line). (b) The measured spectrum of the laser array.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = k = 0 N 1 α k δ ( t k T )
H ( ω ) = k = 0 N 1 α k exp ( j k 2 π Ω ω )
Δ φ = Δ τ × m Ω
H ( ω ) = k = 0 N 1 α k exp [ j ( k 2 π Ω + Δ τ k ) ω ]
= k = 0 N 1 α k exp ( j ω Δ τ k ) × exp ( j k 2 π Ω ω )
k = 0 N 1 α k exp ( j m Ω Δ τ k ) × exp ( j k 2 π Ω ω )
τ k = k T φ k m Ω
H PM IM ( ω ) = cos ( χ λ 2 ω 2 4 π c + π 2 )
χ = 2 π 2 c λ 2 Ω 2
λ k = τ k τ 0 D · L + λ 0

Metrics