S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).

[CrossRef]
[PubMed]

L. Huang, C. Wang, and L. Y. Lin, “A comparison of crosstalk effects between colloidal quantum dot waveguides and conventional waveguides,” Opt. Lett. 32, 235 (2007).

[CrossRef]
[PubMed]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).

[CrossRef]

T. Iida and H. Ishihara, “Force control between quantum dots by light in polaritonic molecule states,” Phys. Rev. Lett. 97, 117402 (2006).

[CrossRef]
[PubMed]

J. A. Klugkist, M. Mostovoy, and J. Knoester, “Mode Softening, Ferroelectric Transition, and Tunable Photonic Band Structures in a Point-Dipole Crystal,” Phys. Rev. Lett. 96, 163903 (2006).

[CrossRef]
[PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

[CrossRef]
[PubMed]

Y. Fu, E. Berglind, L. Thylén, and H. Ågren, “Optical transmission and waveguiding by excitonic quantum dot lattices,” J. Opt. Soc. Am. B 23, 2441 (2006).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

Y. Zeng, X. Chen, W. Lu, and Y. Fu, “Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices,” Eur. Phys. J. B 49, 313 (2006).

[CrossRef]

H. Ajiki, T. Kaneno, and H. Ishihara, “Vacuum-field Rabi splitting in semiconducting core-shell microsphere,” Phys. Rev. B 73, 155322 (2006).

[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett. 6, 2622 (2006).

[CrossRef]
[PubMed]

C. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction Photon Guidance by Quantum-Dot Cascades,” Nano Lett. 6, 2549 (2006).

[CrossRef]
[PubMed]

O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, and C. P. Lee, “Magneto-optical response of layers of semiconductor quantum dots and nanorings,” Phys. Rev. B 71, 245332 (2005).

[CrossRef]

V. Bondarenko, M. Zaluzny, and Y. Zhao, “Interlevel electromagnetic response of systems of spherical quantum dots,” Phys. Rev. B 71, 115304 (2005).

[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slab,” Phys. Status Solidi B. 242, 2197 (2005).

[CrossRef]

C. Wang, L. Y. Lin, and B. A. Parviz, “Modeling and simulation for a nano-photonic quantum dot waveguide fabricated by DNA-directed self-assembly,” J. Sel. Top. Quantum Electron. 11, 500 (2005).

[CrossRef]

X. Zhang and P. Sharma, “Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects,” Phys. Rev. B 72, 195345 (2005).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131 (2005).

[CrossRef]

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagntic response of a point-dipole crystal,” Phys. Rev. B 72, 205103 (2005).

[CrossRef]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

F. Thiele, C. Fuchs, and R. Baltz, “Optical absorption in semiconductor quantum dots: Nonlocal effects,” Phys. Rev. B 64, 205309 (2001).

[CrossRef]

W. Guo, W. Li, and Y. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation,” IEEE Microwave and Wireless Components Lett. 11, 223 (2001).

[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).

[CrossRef]

Y. Fu, M. Willander, and E. L. Ivchenko, “Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices,” Superlatt. Microstruct. 27, 255 (2000).

[CrossRef]

S. Nojima, “Optical response of excitonic polaritons in photonic crystals,” Phys. Rev. B 59, 5662 (1999).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation,” IEEE Microwave Guid. Wave Lett. 8, 415 (1998).

[CrossRef]

L. Belleguie and S. Mukamel, “Nonlocal electrodynamics of arrays of quantum dots,” Phys. Rev. B 52, 1936 (1995).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods,” IEEE Microwave Guid. Wave Lett. 2, 431 (1992).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229 (1989).

[CrossRef]

R. Zeyher, J. L. Birman, and W. Brenig, “Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields,” Phys. Rev. B 6, 4613 (1972).

[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slab,” Phys. Status Solidi B. 242, 2197 (2005).

[CrossRef]

Y. Fu, E. Berglind, L. Thylén, and H. Ågren, “Optical transmission and waveguiding by excitonic quantum dot lattices,” J. Opt. Soc. Am. B 23, 2441 (2006).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

H. Ajiki, T. Kaneno, and H. Ishihara, “Vacuum-field Rabi splitting in semiconducting core-shell microsphere,” Phys. Rev. B 73, 155322 (2006).

[CrossRef]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slab,” Phys. Status Solidi B. 242, 2197 (2005).

[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett. 6, 2622 (2006).

[CrossRef]
[PubMed]

G. A. Baker, Essentials of Padé approximants, Academic Press, New York, 1975.

F. Thiele, C. Fuchs, and R. Baltz, “Optical absorption in semiconductor quantum dots: Nonlocal effects,” Phys. Rev. B 64, 205309 (2001).

[CrossRef]

L. Belleguie and S. Mukamel, “Nonlocal electrodynamics of arrays of quantum dots,” Phys. Rev. B 52, 1936 (1995).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

R. Zeyher, J. L. Birman, and W. Brenig, “Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields,” Phys. Rev. B 6, 4613 (1972).

[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett. 6, 2622 (2006).

[CrossRef]
[PubMed]

V. Bondarenko, M. Zaluzny, and Y. Zhao, “Interlevel electromagnetic response of systems of spherical quantum dots,” Phys. Rev. B 71, 115304 (2005).

[CrossRef]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Pergamon press 1959.

[PubMed]

R. Zeyher, J. L. Birman, and W. Brenig, “Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields,” Phys. Rev. B 6, 4613 (1972).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

Y. Zeng, X. Chen, W. Lu, and Y. Fu, “Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices,” Eur. Phys. J. B 49, 313 (2006).

[CrossRef]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation,” IEEE Microwave Guid. Wave Lett. 8, 415 (1998).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

Y. Zeng, X. Chen, W. Lu, and Y. Fu, “Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices,” Eur. Phys. J. B 49, 313 (2006).

[CrossRef]

Y. Fu, E. Berglind, L. Thylén, and H. Ågren, “Optical transmission and waveguiding by excitonic quantum dot lattices,” J. Opt. Soc. Am. B 23, 2441 (2006).

[CrossRef]

Y. Fu, M. Willander, and E. L. Ivchenko, “Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices,” Superlatt. Microstruct. 27, 255 (2000).

[CrossRef]

F. Thiele, C. Fuchs, and R. Baltz, “Optical absorption in semiconductor quantum dots: Nonlocal effects,” Phys. Rev. B 64, 205309 (2001).

[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slab,” Phys. Status Solidi B. 242, 2197 (2005).

[CrossRef]

W. Guo, W. Li, and Y. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation,” IEEE Microwave and Wireless Components Lett. 11, 223 (2001).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, Second Edition, Artech House Boston2000.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1986).

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229 (1989).

[CrossRef]

L. Huang, C. Wang, and L. Y. Lin, “A comparison of crosstalk effects between colloidal quantum dot waveguides and conventional waveguides,” Opt. Lett. 32, 235 (2007).

[CrossRef]
[PubMed]

C. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction Photon Guidance by Quantum-Dot Cascades,” Nano Lett. 6, 2549 (2006).

[CrossRef]
[PubMed]

W. Guo, W. Li, and Y. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation,” IEEE Microwave and Wireless Components Lett. 11, 223 (2001).

[CrossRef]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).

[CrossRef]

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).

[CrossRef]
[PubMed]

T. Iida and H. Ishihara, “Force control between quantum dots by light in polaritonic molecule states,” Phys. Rev. Lett. 97, 117402 (2006).

[CrossRef]
[PubMed]

T. Iida and H. Ishihara, “Force control between quantum dots by light in polaritonic molecule states,” Phys. Rev. Lett. 97, 117402 (2006).

[CrossRef]
[PubMed]

H. Ajiki, T. Kaneno, and H. Ishihara, “Vacuum-field Rabi splitting in semiconducting core-shell microsphere,” Phys. Rev. B 73, 155322 (2006).

[CrossRef]

Y. Fu, M. Willander, and E. L. Ivchenko, “Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices,” Superlatt. Microstruct. 27, 255 (2000).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

H. Ajiki, T. Kaneno, and H. Ishihara, “Vacuum-field Rabi splitting in semiconducting core-shell microsphere,” Phys. Rev. B 73, 155322 (2006).

[CrossRef]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[CrossRef]

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagntic response of a point-dipole crystal,” Phys. Rev. B 72, 205103 (2005).

[CrossRef]

J. A. Klugkist, M. Mostovoy, and J. Knoester, “Mode Softening, Ferroelectric Transition, and Tunable Photonic Band Structures in a Point-Dipole Crystal,” Phys. Rev. Lett. 96, 163903 (2006).

[CrossRef]
[PubMed]

J. A. Klugkist, M. Mostovoy, and J. Knoester, “Mode Softening, Ferroelectric Transition, and Tunable Photonic Band Structures in a Point-Dipole Crystal,” Phys. Rev. Lett. 96, 163903 (2006).

[CrossRef]
[PubMed]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1986).

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, and C. P. Lee, “Magneto-optical response of layers of semiconductor quantum dots and nanorings,” Phys. Rev. B 71, 245332 (2005).

[CrossRef]

W. Guo, W. Li, and Y. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation,” IEEE Microwave and Wireless Components Lett. 11, 223 (2001).

[CrossRef]

L. Huang, C. Wang, and L. Y. Lin, “A comparison of crosstalk effects between colloidal quantum dot waveguides and conventional waveguides,” Opt. Lett. 32, 235 (2007).

[CrossRef]
[PubMed]

C. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction Photon Guidance by Quantum-Dot Cascades,” Nano Lett. 6, 2549 (2006).

[CrossRef]
[PubMed]

C. Wang, L. Y. Lin, and B. A. Parviz, “Modeling and simulation for a nano-photonic quantum dot waveguide fabricated by DNA-directed self-assembly,” J. Sel. Top. Quantum Electron. 11, 500 (2005).

[CrossRef]

O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, and C. P. Lee, “Magneto-optical response of layers of semiconductor quantum dots and nanorings,” Phys. Rev. B 71, 245332 (2005).

[CrossRef]

Y. Zeng, X. Chen, W. Lu, and Y. Fu, “Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices,” Eur. Phys. J. B 49, 313 (2006).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131 (2005).

[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett. 6, 2622 (2006).

[CrossRef]
[PubMed]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation,” IEEE Microwave Guid. Wave Lett. 8, 415 (1998).

[CrossRef]

J. A. Klugkist, M. Mostovoy, and J. Knoester, “Mode Softening, Ferroelectric Transition, and Tunable Photonic Band Structures in a Point-Dipole Crystal,” Phys. Rev. Lett. 96, 163903 (2006).

[CrossRef]
[PubMed]

L. Belleguie and S. Mukamel, “Nonlocal electrodynamics of arrays of quantum dots,” Phys. Rev. B 52, 1936 (1995).

[CrossRef]

S. Nojima, “Optical response of excitonic polaritons in photonic crystals,” Phys. Rev. B 59, 5662 (1999).

[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

[CrossRef]
[PubMed]

C. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction Photon Guidance by Quantum-Dot Cascades,” Nano Lett. 6, 2549 (2006).

[CrossRef]
[PubMed]

C. Wang, L. Y. Lin, and B. A. Parviz, “Modeling and simulation for a nano-photonic quantum dot waveguide fabricated by DNA-directed self-assembly,” J. Sel. Top. Quantum Electron. 11, 500 (2005).

[CrossRef]

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagntic response of a point-dipole crystal,” Phys. Rev. B 72, 205103 (2005).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods,” IEEE Microwave Guid. Wave Lett. 2, 431 (1992).

[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett. 6, 2622 (2006).

[CrossRef]
[PubMed]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods,” IEEE Microwave Guid. Wave Lett. 2, 431 (1992).

[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).

[CrossRef]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).

[CrossRef]

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagntic response of a point-dipole crystal,” Phys. Rev. B 72, 205103 (2005).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229 (1989).

[CrossRef]

X. Zhang and P. Sharma, “Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects,” Phys. Rev. B 72, 195345 (2005).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131 (2005).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, Second Edition, Artech House Boston2000.

F. J. Taylor, Principles of signals and systems, McGraw-Hill, New York, 1994.

F. Thiele, C. Fuchs, and R. Baltz, “Optical absorption in semiconductor quantum dots: Nonlocal effects,” Phys. Rev. B 64, 205309 (2001).

[CrossRef]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods,” IEEE Microwave Guid. Wave Lett. 2, 431 (1992).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods,” IEEE Microwave Guid. Wave Lett. 2, 431 (1992).

[CrossRef]

O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, and C. P. Lee, “Magneto-optical response of layers of semiconductor quantum dots and nanorings,” Phys. Rev. B 71, 245332 (2005).

[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).

[CrossRef]

L. Huang, C. Wang, and L. Y. Lin, “A comparison of crosstalk effects between colloidal quantum dot waveguides and conventional waveguides,” Opt. Lett. 32, 235 (2007).

[CrossRef]
[PubMed]

C. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction Photon Guidance by Quantum-Dot Cascades,” Nano Lett. 6, 2549 (2006).

[CrossRef]
[PubMed]

C. Wang, L. Y. Lin, and B. A. Parviz, “Modeling and simulation for a nano-photonic quantum dot waveguide fabricated by DNA-directed self-assembly,” J. Sel. Top. Quantum Electron. 11, 500 (2005).

[CrossRef]

O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, and C. P. Lee, “Magneto-optical response of layers of semiconductor quantum dots and nanorings,” Phys. Rev. B 71, 245332 (2005).

[CrossRef]

Y. Fu, M. Willander, and E. L. Ivchenko, “Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices,” Superlatt. Microstruct. 27, 255 (2000).

[CrossRef]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Pergamon press 1959.

[PubMed]

V. Bondarenko, M. Zaluzny, and Y. Zhao, “Interlevel electromagnetic response of systems of spherical quantum dots,” Phys. Rev. B 71, 115304 (2005).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131 (2005).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

Y. Zeng, X. Chen, W. Lu, and Y. Fu, “Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices,” Eur. Phys. J. B 49, 313 (2006).

[CrossRef]

R. Zeyher, J. L. Birman, and W. Brenig, “Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields,” Phys. Rev. B 6, 4613 (1972).

[CrossRef]

X. Zhang and P. Sharma, “Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects,” Phys. Rev. B 72, 195345 (2005).

[CrossRef]

V. Bondarenko, M. Zaluzny, and Y. Zhao, “Interlevel electromagnetic response of systems of spherical quantum dots,” Phys. Rev. B 71, 115304 (2005).

[CrossRef]

Y. Zeng, X. Chen, W. Lu, and Y. Fu, “Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices,” Eur. Phys. J. B 49, 313 (2006).

[CrossRef]

W. Guo, W. Li, and Y. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation,” IEEE Microwave and Wireless Components Lett. 11, 223 (2001).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation,” IEEE Microwave Guid. Wave Lett. 8, 415 (1998).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods,” IEEE Microwave Guid. Wave Lett. 2, 431 (1992).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229 (1989).

[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).

[CrossRef]

C. Wang, L. Y. Lin, and B. A. Parviz, “Modeling and simulation for a nano-photonic quantum dot waveguide fabricated by DNA-directed self-assembly,” J. Sel. Top. Quantum Electron. 11, 500 (2005).

[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett. 6, 2622 (2006).

[CrossRef]
[PubMed]

C. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction Photon Guidance by Quantum-Dot Cascades,” Nano Lett. 6, 2549 (2006).

[CrossRef]
[PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131 (2005).

[CrossRef]

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, “Complete band gaps in three-dimensional quantum dot photonic crystals,” Phys. Rev. B 74, 115325 (2006).

[CrossRef]

S. Nojima, “Optical response of excitonic polaritons in photonic crystals,” Phys. Rev. B 59, 5662 (1999).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D. Bimberg, “Effective boundary conditions for planar quantum dot structures,” Phys. Rev. B 64, 125326 (2001).

[CrossRef]

O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, and C. P. Lee, “Magneto-optical response of layers of semiconductor quantum dots and nanorings,” Phys. Rev. B 71, 245332 (2005).

[CrossRef]

V. Bondarenko, M. Zaluzny, and Y. Zhao, “Interlevel electromagnetic response of systems of spherical quantum dots,” Phys. Rev. B 71, 115304 (2005).

[CrossRef]

L. Belleguie and S. Mukamel, “Nonlocal electrodynamics of arrays of quantum dots,” Phys. Rev. B 52, 1936 (1995).

[CrossRef]

X. Zhang and P. Sharma, “Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects,” Phys. Rev. B 72, 195345 (2005).

[CrossRef]

F. Thiele, C. Fuchs, and R. Baltz, “Optical absorption in semiconductor quantum dots: Nonlocal effects,” Phys. Rev. B 64, 205309 (2001).

[CrossRef]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).

[CrossRef]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).

[CrossRef]

H. Ajiki, T. Kaneno, and H. Ishihara, “Vacuum-field Rabi splitting in semiconducting core-shell microsphere,” Phys. Rev. B 73, 155322 (2006).

[CrossRef]

R. Zeyher, J. L. Birman, and W. Brenig, “Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields,” Phys. Rev. B 6, 4613 (1972).

[CrossRef]

G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, and D. Bimberg, “Polarization splitting of the gain band in quantum wire and quantum dot arrays,” Phys. Rev. B 59, 12275 (1999).

[CrossRef]

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagntic response of a point-dipole crystal,” Phys. Rev. B 72, 205103 (2005).

[CrossRef]

J. A. Klugkist, M. Mostovoy, and J. Knoester, “Mode Softening, Ferroelectric Transition, and Tunable Photonic Band Structures in a Point-Dipole Crystal,” Phys. Rev. Lett. 96, 163903 (2006).

[CrossRef]
[PubMed]

T. Iida and H. Ishihara, “Force control between quantum dots by light in polaritonic molecule states,” Phys. Rev. Lett. 97, 117402 (2006).

[CrossRef]
[PubMed]

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).

[CrossRef]
[PubMed]

L. C. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slab,” Phys. Status Solidi B. 242, 2197 (2005).

[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

[CrossRef]
[PubMed]

Y. Fu, M. Willander, and E. L. Ivchenko, “Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices,” Superlatt. Microstruct. 27, 255 (2000).

[CrossRef]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1986).

G. A. Baker, Essentials of Padé approximants, Academic Press, New York, 1975.

F. J. Taylor, Principles of signals and systems, McGraw-Hill, New York, 1994.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Pergamon press 1959.

[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, Second Edition, Artech House Boston2000.