Abstract

We have theoretically investigated the dispersion characteristics of dispersion compensating fibers based on dual-core liquid-filled PCFs. A very high negative chromatic dispersion value D=-19000 ps/(nm-km) can be achieved at 1.55-µm wavelength by an appropriate design. By varying the geometry of the PCF and the index of the filling liquid, the phase-matching wavelength and dispersion values are shown to be well tuned to desired values. The proposed structure also demonstrates good tunable properties with operation temperature for optical communication systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
    [CrossRef]
  2. B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
    [CrossRef]
  3. K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996).
    [CrossRef]
  4. C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993).
    [CrossRef]
  5. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
    [CrossRef]
  6. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
    [CrossRef]
  7. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
    [CrossRef]
  8. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
    [CrossRef]
  9. K. Pande and B. P. Pal, "Design optimization of a dual-core dipersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers," Appl. Opt. 42, 3785-3791 (2003).
    [CrossRef] [PubMed]
  10. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
    [CrossRef]
  11. C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004).
    [CrossRef]
  12. L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003).
    [CrossRef]
  13. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, "Characterization of microstructured optical fibers for wideband dispersion compensation," J. Opt. Soc. Am. A 20, 1958-1962 (2003).
    [CrossRef]
  14. L. P. Shen, W.-P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol. 21, 1644-1651 (2003).
    [CrossRef]
  15. B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004).
    [CrossRef]
  16. Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
    [CrossRef]
  17. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004).
    [CrossRef] [PubMed]
  18. A. Huttunen and P. Törmä, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-627.
    [CrossRef] [PubMed]
  19. S. Yang, Y. Zhang, X. Peng, Y. Lu, A. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express 14, 3015-3023 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-3015.
    [CrossRef] [PubMed]
  20. S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).
  21. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
    [CrossRef]
  22. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  23. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6800.
    [CrossRef] [PubMed]
  24. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014.
    [CrossRef] [PubMed]
  25. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of function microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2005).
    [CrossRef]
  26. M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
    [CrossRef]
  27. C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
    [CrossRef] [PubMed]
  28. Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853.
    [PubMed]
  29. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3341.
    [CrossRef] [PubMed]
  30. P. J. Chiang, C. P. Yu, and H. C. Chang, "Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Langrange interpolation polynomials," IEEE J. Lightwave Technol. 24, 4411-4416 (2006).
    [CrossRef]
  31. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
    [CrossRef] [PubMed]
  32. L. M. Xiao, W. Jin, M. S. Demokan, H. L. Ho, H. Y. Tam, J. Ju, and J. Yu, "Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers," Opt. Lett. 30, 1791-1793 (2006).
    [CrossRef]

2006 (5)

2005 (4)

2004 (8)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3341.
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004).
[CrossRef]

B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (2)

Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853.
[PubMed]

M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
[CrossRef]

2000 (3)

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

1999 (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
[CrossRef]

1996 (2)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996).
[CrossRef]

1995 (1)

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

1994 (1)

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

1993 (1)

C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Ahmed, K. A.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

Albin, S.

An, L.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

Ando, T.

M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
[CrossRef]

Auguste, J.-L.

F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004).
[CrossRef] [PubMed]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Barker, S. R.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
[CrossRef]

Baulcomb, R. S.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Birks, T.

Bjarklev, A.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
[CrossRef]

Blondy, J.-M.

F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004).
[CrossRef] [PubMed]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Bricheno, T.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
[CrossRef]

Brown, T.

Byron, K. C.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Carlsen, A.

Chang, H. C.

P. J. Chiang, C. P. Yu, and H. C. Chang, "Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Langrange interpolation polynomials," IEEE J. Lightwave Technol. 24, 4411-4416 (2006).
[CrossRef]

C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004).
[CrossRef]

Chen, G. X.

L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003).
[CrossRef]

Chen, W.

Chew, C. P.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Chiang, P. J.

P. J. Chiang, C. P. Yu, and H. C. Chang, "Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Langrange interpolation polynomials," IEEE J. Lightwave Technol. 24, 4411-4416 (2006).
[CrossRef]

Clapeau, M.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Clements, D.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Cucinotta, A.

Damsgaard, H.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Danziger, Y.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

Demokan, M.

Demokan, M. S.

Domachuk, P.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Dussardier, B.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Edvold, B.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Eggleton, B. J.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

Epworth, R. E.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Fan, C.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

Fielding, A.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Folkenberg, J. R.

Fuochi, M.

Garrett, L. D.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

Garthe, D.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Gérôme, F.

Ghatak, A. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Giessen, H.

Giovanni, D. J.

C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

Goyal, I. C.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Grüner-Nielsen, L.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Guo, S.

Hadjifotiou, A.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Hane, K.

M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
[CrossRef]

Hansen, T. P.

Ho, H.

Ho, H. L.

Hoiby, P. E.

Hoo, Y.

Huang, W.-P.

L. P. Shen, W.-P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol. 21, 1644-1651 (2003).
[CrossRef]

L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003).
[CrossRef]

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of function microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2005).
[CrossRef]

Huttunen, A.

Jensen, J. B.

Jian, S. S.

L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003).
[CrossRef]

L. P. Shen, W.-P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol. 21, 1644-1651 (2003).
[CrossRef]

Jiang, Z.

Jin, W.

Jindal, R.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Ju, J.

Kee, C. S.

S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).

Kim, S.

S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).

Knudsen, S. N.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Ko, D. K.

S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).

Krug, P. A.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

Laegsgaard, J.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

Larsen, C. C.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Lee, J.

S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).

Lee, W. S.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Leon-Saval, S.

Levy, U.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

Li, H.

Li, J.

Liu, H.-F.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

Lu, Y.

Magnussen, D.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Marcou, J.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
[CrossRef]

Monnom, G.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Moriwaki, K.

K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996).
[CrossRef]

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Ni, Y.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Nogawa, S.

M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
[CrossRef]

Noordegraaf, D.

Oh, K.

S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).

Ohja, S. M.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Okamato, K.

K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996).
[CrossRef]

Ostrowsky, D. B.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Ouellette, F.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

Pal, B. P.

K. Pande and B. P. Pal, "Design optimization of a dual-core dipersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers," Appl. Opt. 42, 3785-3791 (2003).
[CrossRef] [PubMed]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

Palai, P.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Pande, K.

Pedersen, L. H.

Peng, J.

Peng, X.

Poli, F.

Poole, C. D.

C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Riishede, J.

Rogowski, R.

Rourke, H. N.

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

Sasaki, M.

M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
[CrossRef]

Selleri, S.

Shen, L. P.

L. P. Shen, W.-P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol. 21, 1644-1651 (2003).
[CrossRef]

L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003).
[CrossRef]

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Tai, H.

Takiguchi, K.

K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996).
[CrossRef]

Tam, H. Y.

Teipel, J.

Thyagarajan, K.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Törmä, P.

Tur, M.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

Varshney, R. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Veng, T.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

Vincetti, L.

Wadsworth, W.

Weisenfeld, J. M.

C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Witkowska, A.

Wu, F.

Xiao, L.

Xiao, L. M.

Xie, A.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of function microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2005).
[CrossRef]

Yang, S.

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of function microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2005).
[CrossRef]

Yu, C. P.

P. J. Chiang, C. P. Yu, and H. C. Chang, "Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Langrange interpolation polynomials," IEEE J. Lightwave Technol. 24, 4411-4416 (2006).
[CrossRef]

C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004).
[CrossRef]

Yu, J.

Zhang, R.

Zhang, Y.

Zhao, C.

Zhu, Z.

Zsigri, B.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of function microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2005).
[CrossRef]

Electron. Lett. (3)

D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994).
[CrossRef]

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

IEEE J. Lightwave Technol. (1)

P. J. Chiang, C. P. Yu, and H. C. Chang, "Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Langrange interpolation polynomials," IEEE J. Lightwave Technol. 24, 4411-4416 (2006).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995).
[CrossRef]

C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993).
[CrossRef]

J. Korean Phys. Soc. (1)

S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).

J. Lightwave Technol. (2)

K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996).
[CrossRef]

L. P. Shen, W.-P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol. 21, 1644-1651 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002).
[CrossRef]

Opt. Express (8)

Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853.
[PubMed]

S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3341.
[CrossRef] [PubMed]

W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014.
[CrossRef] [PubMed]

S. Yang, Y. Zhang, X. Peng, Y. Lu, A. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express 14, 3015-3023 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-3015.
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6800.
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165.
[CrossRef] [PubMed]

A. Huttunen and P. Törmä, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-627.
[CrossRef] [PubMed]

Opt. Fiber Technol. (2)

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Illustration of possible fabrication for selectively inserting liquid into the PCF through the fiber preform. (b) Cross-sectional view of the dual-core liquid-filled PCF for dispersion compensation.

Fig. 2.
Fig. 2.

(a) Effective indices and (b) losses versus the wavelength for the fundamental (solid line) and second-order (dashed line) modes.

Fig. 3.
Fig. 3.

Field distributions for the fundamental modes on the dual-core liquid-filled PCF for λ=(a) 1.52 µm, (b) 1.55 µm, and (c) 1.58 µm, respectively.

Fig. 4.
Fig. 4.

Dispersion values versus the wavelength for the fundamental and second-order modes.

Fig. 5.
Fig. 5.

(a) Effective index curves for the dual-core PCF in Fig. 1(b) with the liquid filled in variant air-hole layers. (b) Dispersion values of the dual-core PCF with the liquid filled in variant air-hole layers.

Fig. 6.
Fig. 6.

Dispersion values of dual-core liquid-filled PCFs with variant air-hole sizes.

Fig. 7.
Fig. 7.

(a) Dispersion curves for dual-core liquid-filled PCF in Fig. 1(b) with various liquid indices nq . (b) Corresponding phase-matching wavelengths and dispersion values for various liquid indices nq .

Fig. 8.
Fig. 8.

(a) Dispersion curves for a dual-core liquid-filled PCF operated at variant temperatures. (b) Phase-matching wavelengths for a dual-core liquid-filled PCF operated at variant temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = λ c d 2 n eff d λ 2

Metrics