Abstract

We present a numerical method based on the detection of the zero-crossing points in an OCT signal for the measurement of the Doppler frequency in a laminar flow. This method is compared to other processing approaches currently used in Doppler OCT. The results show that in the case of laminar flow the zero-crossing method gives the most precise results, especially in the higher velocity regime.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of fluid flow velocity by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995).
    [CrossRef] [PubMed]
  3. Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
    [CrossRef]
  4. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, " Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  5. L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
    [CrossRef]
  6. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, "Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator," Opt. Lett. 32, 253-255 (2007).
    [CrossRef] [PubMed]
  7. A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
    [CrossRef] [PubMed]
  8. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Flow velocity measurement by frequency domain short coherence interferometry," Proc. SPIE 4619, 16-21 (2002).
    [CrossRef]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  10. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in-vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
    [CrossRef] [PubMed]
  11. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  13. M. Bonesi, D. Churmakov, and I. Meglinski, "Study of flow dynamics in complex vessels using Doppler optical coherence tomography," Meas. Sci. Technol. 18, 3279-3286 (2007).
    [CrossRef]
  14. S. G. Proskurin, Y. He, and R. K. Wang, "Doppler optical coherence imaging of converging flow," Phys. Med. Biol. 49, 1265-1276 (2004).
    [CrossRef] [PubMed]
  15. R. K. Wang, "High-resolution visualization of fluid dynamics with Doppler optical coherence tomography," Meas. Sci. Technol. 15, 725-733 (2004).
    [CrossRef]
  16. L. Wu, "Simultaneous measurement of flow velocity and Doppler angle by the use of Doppler optical coherence tomography," Opt. Laser Eng. 42, 303-313 (2004).
    [CrossRef]
  17. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  18. R. A. Leitgeb, A. Szkulmowska, M. Pircher, E. Götzinger, and A. F. Fercher, "Resonant Doppler imaging with Fourier domain optical coherence tomography," Proc. SPIE 5690, 440-445 (2005).
    [CrossRef]
  19. J. F. De Boer, B. Cense, B. Hyle Park, M. C. Pearce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  20. Z. Xu, L. Carrion, and R. Maciejko, "An assessment of the Wigner distribution method in Doppler OCT," Opt. Express 15, 14738-14749 (2007)
    [CrossRef] [PubMed]
  21. R. W. A. Scarr, "Zero crossings as a means of obtaining spectral information in speech analysis," IEEE Trans. Audio Electroacoustics AU-16, 247-255 (1968).
    [CrossRef]
  22. J. Ohtsubo, "Exact solution of the zero crossing rate of a differentiated speckle pattern," Opt. Commun. 42, 13-18 (1982).
    [CrossRef]
  23. T. Masuda, H. Miyano, and T. Sadoyama, "The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method," IEEE Trans. Biomed. Eng. BME-29, 673-678 (1982).
    [CrossRef]
  24. K. R. Sreenivasan, A. Prabhu, and R. Narasimha, "Zero-crossings in turbulent signals," J. Fluid Mech. 137, 251-270 (1983).
    [CrossRef]
  25. R. J. Adrian, "Statistics of laser Doppler velocimeter signals: frequency measurements," J. Phys. E: Sci. Instrum. 5, 91-95 (1972).
    [CrossRef]
  26. D. L. Franklin, W. Schlegel, and R. F. Rushmer, "Blood flow measured by Doppler frequency shift of back-scattered ultrasound," Science 134, 564-565 (1961).
    [CrossRef] [PubMed]
  27. A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
    [PubMed]
  28. S. O. Rice, Selected Papers on Noise and Stochastic Processes, Part III, N. Wax, ed., (Dover, N.Y., 1954).
  29. C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
    [CrossRef]
  30. M. J. Lunt, "Accuracy and limitations of the ultrasonic Doppler blood velocimeter and zero crossing detector," Ultrasound Med. Biol. 2, 1-10 (1975).
    [CrossRef] [PubMed]
  31. G. L. Cote and M. D. Fox, "Comparison of zero-crossing counter to FFT spectrum of ultrasound Doppler," IEEE Trans. Biomed. Eng. 35, 498-502 (1988).
    [CrossRef] [PubMed]
  32. B. Kedem, "Spectral analysis and discrimination by zero-crossings," Proc. IEEE 74, pp. 1477-1493 (1986).
    [CrossRef]
  33. I. Popov, "Accuracy of zero crossing counting in laser Doppler velocimetry," Proc. SPIE 4827, 394-402 (2002).
    [CrossRef]
  34. C. Xu, F. Kamalabadi, and S. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005).
    [CrossRef] [PubMed]
  35. I. Imai and K. Tanaka, "Direct velocity sensing of flow distribution based on low-coherence interferometry," J. Opt. Soc. Am. A 16, 2007-2012 (1999).
    [CrossRef]
  36. L. Cohen, Time-Frequency Analysis, (Prentice Hall, Englewood Cliffs, N.J., 1995).
  37. F. Auger, P. Flandrin, P. Gonçalvès, and O. Lemoine, "Time-Frequency Toolbox tutorial," CNRS (France), Rice U. (U.S.A.), http://tftb.nongnu.org/ (2005) and http://gdr-isis.org/tftb/tutorial/tutorial.html.

2007

2005

2004

S. G. Proskurin, Y. He, and R. K. Wang, "Doppler optical coherence imaging of converging flow," Phys. Med. Biol. 49, 1265-1276 (2004).
[CrossRef] [PubMed]

R. K. Wang, "High-resolution visualization of fluid dynamics with Doppler optical coherence tomography," Meas. Sci. Technol. 15, 725-733 (2004).
[CrossRef]

L. Wu, "Simultaneous measurement of flow velocity and Doppler angle by the use of Doppler optical coherence tomography," Opt. Laser Eng. 42, 303-313 (2004).
[CrossRef]

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in-vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

2003

2002

I. Popov, "Accuracy of zero crossing counting in laser Doppler velocimetry," Proc. SPIE 4827, 394-402 (2002).
[CrossRef]

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Flow velocity measurement by frequency domain short coherence interferometry," Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

2000

1999

I. Imai and K. Tanaka, "Direct velocity sensing of flow distribution based on low-coherence interferometry," J. Opt. Soc. Am. A 16, 2007-2012 (1999).
[CrossRef]

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

1995

1993

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
[PubMed]

1988

G. L. Cote and M. D. Fox, "Comparison of zero-crossing counter to FFT spectrum of ultrasound Doppler," IEEE Trans. Biomed. Eng. 35, 498-502 (1988).
[CrossRef] [PubMed]

1986

B. Kedem, "Spectral analysis and discrimination by zero-crossings," Proc. IEEE 74, pp. 1477-1493 (1986).
[CrossRef]

1983

K. R. Sreenivasan, A. Prabhu, and R. Narasimha, "Zero-crossings in turbulent signals," J. Fluid Mech. 137, 251-270 (1983).
[CrossRef]

1982

J. Ohtsubo, "Exact solution of the zero crossing rate of a differentiated speckle pattern," Opt. Commun. 42, 13-18 (1982).
[CrossRef]

T. Masuda, H. Miyano, and T. Sadoyama, "The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method," IEEE Trans. Biomed. Eng. BME-29, 673-678 (1982).
[CrossRef]

1975

M. J. Lunt, "Accuracy and limitations of the ultrasonic Doppler blood velocimeter and zero crossing detector," Ultrasound Med. Biol. 2, 1-10 (1975).
[CrossRef] [PubMed]

1972

R. J. Adrian, "Statistics of laser Doppler velocimeter signals: frequency measurements," J. Phys. E: Sci. Instrum. 5, 91-95 (1972).
[CrossRef]

1968

R. W. A. Scarr, "Zero crossings as a means of obtaining spectral information in speech analysis," IEEE Trans. Audio Electroacoustics AU-16, 247-255 (1968).
[CrossRef]

1961

D. L. Franklin, W. Schlegel, and R. F. Rushmer, "Blood flow measured by Doppler frequency shift of back-scattered ultrasound," Science 134, 564-565 (1961).
[CrossRef] [PubMed]

Adrian, R. J.

R. J. Adrian, "Statistics of laser Doppler velocimeter signals: frequency measurements," J. Phys. E: Sci. Instrum. 5, 91-95 (1972).
[CrossRef]

Bachman, M.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

Bajraszewski, T.

Barton, J. K.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Berisha, F.

Bonesi, M.

M. Bonesi, D. Churmakov, and I. Meglinski, "Study of flow dynamics in complex vessels using Doppler optical coherence tomography," Meas. Sci. Technol. 18, 3279-3286 (2007).
[CrossRef]

Boppart, S.

Bouma, B. E.

Carrion, L.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Z.

Chen, Z. P.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

Churmakov, D.

M. Bonesi, D. Churmakov, and I. Meglinski, "Study of flow dynamics in complex vessels using Doppler optical coherence tomography," Meas. Sci. Technol. 18, 3279-3286 (2007).
[CrossRef]

Cote, G. L.

G. L. Cote and M. D. Fox, "Comparison of zero-crossing counter to FFT spectrum of ultrasound Doppler," IEEE Trans. Biomed. Eng. 35, 498-502 (1988).
[CrossRef] [PubMed]

de Boer, J. F.

deJaegere, P.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Di Mario, C.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Drexler, H.

A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
[PubMed]

Drexler, W.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fox, M. D.

G. L. Cote and M. D. Fox, "Comparison of zero-crossing counter to FFT spectrum of ultrasound Doppler," IEEE Trans. Biomed. Eng. 35, 498-502 (1988).
[CrossRef] [PubMed]

Franklin, D. L.

D. L. Franklin, W. Schlegel, and R. F. Rushmer, "Blood flow measured by Doppler frequency shift of back-scattered ultrasound," Science 134, 564-565 (1961).
[CrossRef] [PubMed]

Frostig, R. D.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Götzinger, E.

R. A. Leitgeb, A. Szkulmowska, M. Pircher, E. Götzinger, and A. F. Fercher, "Resonant Doppler imaging with Fourier domain optical coherence tomography," Proc. SPIE 5690, 440-445 (2005).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

He, Y.

S. G. Proskurin, Y. He, and R. K. Wang, "Doppler optical coherence imaging of converging flow," Phys. Med. Biol. 49, 1265-1276 (2004).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hyle Park, B.

Imai, I.

Izatt, J. A.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Just, H.

A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
[PubMed]

Kamalabadi, F.

Kedem, B.

B. Kedem, "Spectral analysis and discrimination by zero-crossings," Proc. IEEE 74, pp. 1477-1493 (1986).
[CrossRef]

Kolios, M. C.

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Flow velocity measurement by frequency domain short coherence interferometry," Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

Leitgeb, R. A.

Li, G. P.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Linker, D. T.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Lunt, M. J.

M. J. Lunt, "Accuracy and limitations of the ultrasonic Doppler blood velocimeter and zero crossing detector," Ultrasound Med. Biol. 2, 1-10 (1975).
[CrossRef] [PubMed]

Maciejko, R.

Masuda, T.

T. Masuda, H. Miyano, and T. Sadoyama, "The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method," IEEE Trans. Biomed. Eng. BME-29, 673-678 (1982).
[CrossRef]

Meglinski, I.

M. Bonesi, D. Churmakov, and I. Meglinski, "Study of flow dynamics in complex vessels using Doppler optical coherence tomography," Meas. Sci. Technol. 18, 3279-3286 (2007).
[CrossRef]

Milner, T. E.

Miyano, H.

T. Masuda, H. Miyano, and T. Sadoyama, "The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method," IEEE Trans. Biomed. Eng. BME-29, 673-678 (1982).
[CrossRef]

Morofke, D.

Narasimha, R.

K. R. Sreenivasan, A. Prabhu, and R. Narasimha, "Zero-crossings in turbulent signals," J. Fluid Mech. 137, 251-270 (1983).
[CrossRef]

Nassif, N.

Nelson, J. S.

Ohtsubo, J.

J. Ohtsubo, "Exact solution of the zero crossing rate of a differentiated speckle pattern," Opt. Commun. 42, 13-18 (1982).
[CrossRef]

Oomen, J.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Park, B. H.

Pearce, M. C.

Pierce, M. C.

Pircher, M.

R. A. Leitgeb, A. Szkulmowska, M. Pircher, E. Götzinger, and A. F. Fercher, "Resonant Doppler imaging with Fourier domain optical coherence tomography," Proc. SPIE 5690, 440-445 (2005).
[CrossRef]

Popov, I.

I. Popov, "Accuracy of zero crossing counting in laser Doppler velocimetry," Proc. SPIE 4827, 394-402 (2002).
[CrossRef]

Prabhu, A.

K. R. Sreenivasan, A. Prabhu, and R. Narasimha, "Zero-crossings in turbulent signals," J. Fluid Mech. 137, 251-270 (1983).
[CrossRef]

Prakash, N.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

Proskurin, S. G.

S. G. Proskurin, Y. He, and R. K. Wang, "Doppler optical coherence imaging of converging flow," Phys. Med. Biol. 49, 1265-1276 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Roelandt, J. R. T. C.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Rollins, A. M.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Rushmer, R. F.

D. L. Franklin, W. Schlegel, and R. F. Rushmer, "Blood flow measured by Doppler frequency shift of back-scattered ultrasound," Science 134, 564-565 (1961).
[CrossRef] [PubMed]

Sadoyama, T.

T. Masuda, H. Miyano, and T. Sadoyama, "The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method," IEEE Trans. Biomed. Eng. BME-29, 673-678 (1982).
[CrossRef]

Saxer, C.

Scarr, R. W. A.

R. W. A. Scarr, "Zero crossings as a means of obtaining spectral information in speech analysis," IEEE Trans. Audio Electroacoustics AU-16, 247-255 (1968).
[CrossRef]

Schlegel, W.

D. L. Franklin, W. Schlegel, and R. F. Rushmer, "Blood flow measured by Doppler frequency shift of back-scattered ultrasound," Science 134, 564-565 (1961).
[CrossRef] [PubMed]

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Serruys, P. W.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Sreenivasan, K. R.

K. R. Sreenivasan, A. Prabhu, and R. Narasimha, "Zero-crossings in turbulent signals," J. Fluid Mech. 137, 251-270 (1983).
[CrossRef]

Srinivas, S. M.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

Sticker, M.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Flow velocity measurement by frequency domain short coherence interferometry," Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

R. A. Leitgeb, A. Szkulmowska, M. Pircher, E. Götzinger, and A. F. Fercher, "Resonant Doppler imaging with Fourier domain optical coherence tomography," Proc. SPIE 5690, 440-445 (2005).
[CrossRef]

Tanaka, K.

Tearney, G. J.

Vakoc, B. J.

Vitkin, I. A.

Wang, L.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

Wang, R. K.

R. K. Wang, "High-resolution visualization of fluid dynamics with Doppler optical coherence tomography," Meas. Sci. Technol. 15, 725-733 (2004).
[CrossRef]

S. G. Proskurin, Y. He, and R. K. Wang, "Doppler optical coherence imaging of converging flow," Phys. Med. Biol. 49, 1265-1276 (2004).
[CrossRef] [PubMed]

Wang, X. J.

White, B. R.

Wojtkowski, M.

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in-vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Flow velocity measurement by frequency domain short coherence interferometry," Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

Wollschlager, H.

A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
[PubMed]

Wu, L.

L. Wu, "Simultaneous measurement of flow velocity and Doppler angle by the use of Doppler optical coherence tomography," Opt. Laser Eng. 42, 303-313 (2004).
[CrossRef]

Xiang, S.

Xu, C.

Xu, W.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

Xu, Z.

Yang, V. X. D.

Yazdanfar, S.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Yun, S. H.

Zawadzki, R. J.

Zeiher, A. M.

A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
[PubMed]

Zhao, Y.

Zhao, Y. H.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, "Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels," Appl. Phys. Lett. 85, 1855-1857 (2004).
[CrossRef]

Cath. Cardiovasc. Diagn.

C. Di Mario, J. R. T. C. Roelandt, P. deJaegere, D. T. Linker, J. Oomen, and P. W. Serruys, "Limitations of the zero crossing detector in the analysis of intracoronary Doppler: A comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease," Cath. Cardiovasc. Diagn. 28, 56-64 (1993).
[CrossRef]

Circulation

A. M. Zeiher, H. Drexler, H. Wollschlager, and H. Just, "Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis," Circulation 84, 1984-1992 (1991).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler Tomography," IEEE J. Sel. Top. Quantum Electron. 5, 1134-1142 (1999).
[CrossRef]

IEEE Trans. Audio Electroacoustics

R. W. A. Scarr, "Zero crossings as a means of obtaining spectral information in speech analysis," IEEE Trans. Audio Electroacoustics AU-16, 247-255 (1968).
[CrossRef]

IEEE Trans. Biomed. Eng.

T. Masuda, H. Miyano, and T. Sadoyama, "The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method," IEEE Trans. Biomed. Eng. BME-29, 673-678 (1982).
[CrossRef]

G. L. Cote and M. D. Fox, "Comparison of zero-crossing counter to FFT spectrum of ultrasound Doppler," IEEE Trans. Biomed. Eng. 35, 498-502 (1988).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

J. Fluid Mech.

K. R. Sreenivasan, A. Prabhu, and R. Narasimha, "Zero-crossings in turbulent signals," J. Fluid Mech. 137, 251-270 (1983).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. E: Sci. Instrum.

R. J. Adrian, "Statistics of laser Doppler velocimeter signals: frequency measurements," J. Phys. E: Sci. Instrum. 5, 91-95 (1972).
[CrossRef]

Meas. Sci. Technol.

M. Bonesi, D. Churmakov, and I. Meglinski, "Study of flow dynamics in complex vessels using Doppler optical coherence tomography," Meas. Sci. Technol. 18, 3279-3286 (2007).
[CrossRef]

R. K. Wang, "High-resolution visualization of fluid dynamics with Doppler optical coherence tomography," Meas. Sci. Technol. 15, 725-733 (2004).
[CrossRef]

Opt. Commun.

J. Ohtsubo, "Exact solution of the zero crossing rate of a differentiated speckle pattern," Opt. Commun. 42, 13-18 (1982).
[CrossRef]

Opt. Express

Opt. Laser Eng.

L. Wu, "Simultaneous measurement of flow velocity and Doppler angle by the use of Doppler optical coherence tomography," Opt. Laser Eng. 42, 303-313 (2004).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

S. G. Proskurin, Y. He, and R. K. Wang, "Doppler optical coherence imaging of converging flow," Phys. Med. Biol. 49, 1265-1276 (2004).
[CrossRef] [PubMed]

Proc. IEEE

B. Kedem, "Spectral analysis and discrimination by zero-crossings," Proc. IEEE 74, pp. 1477-1493 (1986).
[CrossRef]

Proc. SPIE

I. Popov, "Accuracy of zero crossing counting in laser Doppler velocimetry," Proc. SPIE 4827, 394-402 (2002).
[CrossRef]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Flow velocity measurement by frequency domain short coherence interferometry," Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

R. A. Leitgeb, A. Szkulmowska, M. Pircher, E. Götzinger, and A. F. Fercher, "Resonant Doppler imaging with Fourier domain optical coherence tomography," Proc. SPIE 5690, 440-445 (2005).
[CrossRef]

Science

D. L. Franklin, W. Schlegel, and R. F. Rushmer, "Blood flow measured by Doppler frequency shift of back-scattered ultrasound," Science 134, 564-565 (1961).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ultrasound Med. Biol.

M. J. Lunt, "Accuracy and limitations of the ultrasonic Doppler blood velocimeter and zero crossing detector," Ultrasound Med. Biol. 2, 1-10 (1975).
[CrossRef] [PubMed]

Other

L. Cohen, Time-Frequency Analysis, (Prentice Hall, Englewood Cliffs, N.J., 1995).

F. Auger, P. Flandrin, P. Gonçalvès, and O. Lemoine, "Time-Frequency Toolbox tutorial," CNRS (France), Rice U. (U.S.A.), http://tftb.nongnu.org/ (2005) and http://gdr-isis.org/tftb/tutorial/tutorial.html.

S. O. Rice, Selected Papers on Noise and Stochastic Processes, Part III, N. Wax, ed., (Dover, N.Y., 1954).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

A sample signal used to calculate the zero-crossing points, red cross, and the defined time durations.

Fig. 2.
Fig. 2.

Effective sampling parameter of map velocity and precision of calculated frequency as a function of Doppler frequency F.

Fig. 3.
Fig. 3.

(a). The original interferogram signal along the center of the tube and (b) the normalized data.

Fig. 4.
Fig. 4.

Color-coded 3D time-frequency distribution of the signal along the center of the tube using the Wigner method.

Fig. 5.
Fig. 5.

Two-dimensional frequency distribution of the signal using the Wigner method. Black dots indicate the maximum frequency values of the spectra at each measured point while the yellow trace corresponds to the filtered frequency distribution.

Fig. 6.
Fig. 6.

Small segment of the detected signal at a 100 kHz sampling rate. The stars indicate the zero-crossing points.

Fig. 7.
Fig. 7.

Comparison of Wigner and zero-crossing time-frequency distributions of the sample signal of Fig. 6. The points correspond to the Wigner method using the maximum values of the local spectra. The stars come from the zero-crossing method.

Fig. 8.
Fig. 8.

Two-dimensional frequency distribution of the signal by the zero-crossing method. The black dots indicate the obtained frequencies and the yellow trace shows the resulting frequency distribution after noise rejection.

Fig. 9.
Fig. 9.

Computed flow profiles using a quadratic fit.

Fig. 10.
Fig. 10.

Comparison of the deviations of the three methods from the theoretical results.

Fig. 11.
Fig. 11.

OCT image of the tube profile. The superimposed contour plots correspond to the frequencies calculated using experimental values and the Pseudo Wigner method (black solid curves). The white curves indicate the calculated frequencies using the zero-crossing method. The white curve near the center of the tube is the contour at 9 kHz given only by zero-cross method.

Fig. 12.
Fig. 12.

3D velocity distribution of the cross section of the tube calculated from experimental values using the zero-crossing method.

Fig. 13.
Fig. 13.

(a). OCT raw signal sample (black curve) and normalized signal sample (blue curve) used for frequency calculation. (b). Local frequencies calculated with different methods.

Fig. 14.
Fig. 14.

Normalized frequency distributions obtained with the three methods with fluid at rest (red) and with fluid in motion (blue).

Fig. 15.
Fig. 15.

FM SNR fmax/Δf at the center of the capillary tube calculated by the three methods (a) without and (b) with flow motion inside the tube.

Fig. 16.
Fig. 16.

FM SNR fmax/Δf at the edge of the capillary tube calculated by the three methods (a) without and (b) with flow motion inside the tube.

Fig. 17.
Fig. 17.

The frequency spread Δf at the edge of the capillary tube (a) and in the middle of the tube (b) as a function of the source power. Black line has a slope of -0.5. Dark brown dotted line represents the linear fit of the zero-crossing method results and has a slope of -0.29.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ f D = 1 2 π ( k s k i ) × v .
v ODT = λ 0 Δ f D 2 n ¯ cos ( θ ) .
F = 1 2 · Δ t .
t z = t 1 + τ ( 1 + S 1 S 2 )
δ ( Δ t ) = 2 τ .
δ F F = δ ( Δ t ) Δ t = 4 τ F .
δ x = Δ t · n V scan
δ x = n V scan 2 F
V ( r ) = V c [ 1 ( r d 2 ) 2 ] .
W t ω = 1 2 π y * ( t 1 2 τ ) y ( t + 1 2 τ ) e j ω τ d τ .
W t ω dt = Y ( ω ) 2 .
W t ω d ω = y ( t ) 2 .
PW t ω = 1 2 π h ( τ ) y * ( t 1 2 τ ) y ( t + 1 2 τ ) e j ω τ d τ .

Metrics