Abstract

In this paper, we develop an optical measurement system with capabilities of phase unwrapping, real-time and long-term monitoring for measuring a phase drift caused by photorefractive effects in lithium niobate phase modulators. To extract the phase-drift variations, the measurement setup uses a homodyne interferometer with a phase modulation and a Fast Fourier Transform (FFT) demodulation scheme. The phase-drift characteristics of a traditional Ti-indiffused and a Zn-indiffused phase modulator have been investigated under different applied voltages and throughput powers. These experiments were conducted as a proof-of-concept to demonstrate that the apparatus worked successfully to measure the phase drift of a device in the presence of photorefractive effects. The results indicate that the Zn-indiffused phase modulators have better photorefractive stability than the Ti-indiffused phase modulators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
    [CrossRef]
  2. T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
    [CrossRef]
  3. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  4. G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, "Theoretical study of resistance against light-induced scattering in LiNbO3:M (M = Mg2+,Zn2+,In3+,Sc3+) crystals," Opt. Lett. 22, 1666-1668 (1997).
    [CrossRef]
  5. Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995).
    [CrossRef]
  6. P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007).
    [CrossRef] [PubMed]
  7. C. H. Huang and L. McCaughan, "980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron. 2, 367-372 (1996).
    [CrossRef]
  8. L. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
    [CrossRef] [PubMed]
  9. T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993).
    [CrossRef] [PubMed]
  10. O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
    [CrossRef]
  11. R. A. Becker, "Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).
    [CrossRef]
  12. H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
    [CrossRef]
  13. S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
    [CrossRef]
  14. M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
    [CrossRef]
  15. B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007).
    [CrossRef]
  16. V. S. Sudarshanam and K. Srinivasan, "Linear readout of dynamic phase change in a fiber-optic homodyne interferometer," Opt. Lett. 14, 140-143 (1989).
    [CrossRef] [PubMed]
  17. R. C. Twu, H. H. Lee, H. Y. Hong, and C. Y. Yang, "A novel Zn-indiffused mode converter in x-cut lithium niobate," Opt. Express 15, 15576-15582 (2007).
    [CrossRef] [PubMed]
  18. E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
    [CrossRef]
  19. M. Carrascosa, J. Villarroel, J. Carnicero, A. Garcia-Cabanes, and J. M. Cabrera, "Understanding light intensity thresholds for catastrophic optical damages in LiNbO3," Opt. Express 16, 115-120 (2008).
    [CrossRef] [PubMed]
  20. M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007).
    [CrossRef]

2008 (1)

2007 (4)

M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007).
[CrossRef]

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007).
[CrossRef] [PubMed]

B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007).
[CrossRef]

R. C. Twu, H. H. Lee, H. Y. Hong, and C. Y. Yang, "A novel Zn-indiffused mode converter in x-cut lithium niobate," Opt. Express 15, 15576-15582 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

1997 (2)

G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, "Theoretical study of resistance against light-induced scattering in LiNbO3:M (M = Mg2+,Zn2+,In3+,Sc3+) crystals," Opt. Lett. 22, 1666-1668 (1997).
[CrossRef]

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
[CrossRef]

1996 (1)

C. H. Huang and L. McCaughan, "980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron. 2, 367-372 (1996).
[CrossRef]

1995 (2)

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
[CrossRef]

1994 (1)

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

1993 (1)

1992 (1)

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

1989 (1)

1985 (1)

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

1984 (1)

R. A. Becker, "Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).
[CrossRef]

1981 (1)

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

Alferness, R. C.

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

Armelles, G.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007).
[CrossRef]

Becker, R. A.

R. A. Becker, "Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Buse, K.

M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007).
[CrossRef]

Cabrera, J. M.

Cao, X.

Carnicero, J.

Carrascosa, M.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chamberland, M.

M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Cristiani, I.

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007).
[CrossRef] [PubMed]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

Degiorgio, V.

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007).
[CrossRef] [PubMed]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

Eknoyan, O.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
[CrossRef]

Emmerson, G. D.

Falk, M.

M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007).
[CrossRef]

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Fujiwara, T.

Gallo, K.

Garcia-Cabanes, A.

Gawith, C. B. E.

Gruber, J. B.

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

Hayashi, I.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Hong, H. Y.

Huang, C. H.

C. H. Huang and L. McCaughan, "980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron. 2, 367-372 (1996).
[CrossRef]

Kawazoe, T.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Kiuchi, K.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Kokanyan, E. P.

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007).
[CrossRef] [PubMed]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

Kong, Y.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Lechuga, L. M.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007).
[CrossRef]

Lee, H. H.

Levesque, M.

M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
[CrossRef]

Liu, S.

Matous, W.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
[CrossRef]

McCaughan, L.

C. H. Huang and L. McCaughan, "980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron. 2, 367-372 (1996).
[CrossRef]

Ming, L.

Minzioni, P.

Mori, H.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Nagata, H.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

O’Connor, M. V.

Ogiwara, J.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Ottinger, T.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
[CrossRef]

Parravicini, J.

Ramaswamy, R. V.

Razzari, L.

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

Satoh, K.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Sepúlveda, B.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007).
[CrossRef]

Shimotsu, S.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Smith, P. G. R.

Srinivasan, K.

Srivastava, R.

Sudarshanam, V. S.

Sun, Q.

Taylor, H. F.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
[CrossRef]

Têtu, M.

M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
[CrossRef]

Thaniyavarn, S.

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

Tian, G.

Tremblay, P.

M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
[CrossRef]

Twu, R. C.

Villarroel, J.

Wang, H.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Woike, Th.

M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007).
[CrossRef]

Xu, J.

Yang, C. Y.

Yu, J.

Zhang, G.

Appl. Phys. Lett. (6)

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).
[CrossRef]

R. A. Becker, "Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984).
[CrossRef]

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004).
[CrossRef]

M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995).
[CrossRef]

J. Appl. Phys. (1)

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

J. Lightwave Technol. (1)

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

J. Selected Topics in Quantum Electron. (1)

C. H. Huang and L. McCaughan, "980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron. 2, 367-372 (1996).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Sens. Actuators A-Phys. (1)

B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A schematic of the experimental setup for measuring a phase drift of a phase modulator.

Fig. 2.
Fig. 2.

LabVIEW-based front panel for real-time and long-term monitoring to the received and calculated signals: (a) the measured optical signal, (b) the analyzed FFT spectrum, (c) the measured phase variations with a phase ambiguity, and (d) the phase-unwrapping signal.

Fig. 3.
Fig. 3.

Linearity between simulated voltages and induced phase drifts for different values of β.

Fig. 4.
Fig. 4.

Dependence of simulated phase variations on the angles of the analyzer (AL).

Fig. 5.
Fig. 5.

Comparison of phase drift as a function of illuminating time under different applied DC voltages at a throughput power of 5 µW: (a) TI phase modulator and (b) ZI phase modulator.

Fig. 6.
Fig. 6.

Comparison of phase drifts as a function of illuminating time for the TI and ZI phase modulators at a throughput power of 25 µW.

Fig. 7.
Fig. 7.

Phase drifts of the ZI phase modulator as a function of illuminating time under different applied DC voltages at a throughput power of 50 µW.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P out = γ TE 2 + γ TM 2 + 2 γ TE γ TM cos [ β sin ( 2 π f t ) + ϕ ]
β = V ac V π π
ϕ = Δ ϕ + Δ ϕ PR
Δ ϕ PR = 4 π λ L n o 3 r 22 Γ E PR
P out = γ TE 2 + γ TM 2 + 2 γ TE γ TM k = J k ( β ) cos ( ϕ + 2 π k f t )
I 1 = 4 γ TE · γ TM sin ( ϕ ) J 1 ( β )
I 2 = 4 γ TE · γ TM cos ( ϕ ) J 2 ( β )
ϕ = tan 1 ( I 1 · J 2 ( β ) I 2 · J 1 ( β ) )

Metrics