P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]
[PubMed]
R. C. Twu, H. H. Lee, H. Y. Hong, and C. Y. Yang, “A novel Zn-indiffused mode converter in x-cut lithium niobate,” Opt. Express 15, 15576–15582 (2007).
[Crossref]
[PubMed]
B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors,” Sens. Actuators A-Phys. 134, 339–347 (2007).
[Crossref]
M. Falk, Th. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90, 251912 (2007).
[Crossref]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping,” J. Selected Topics in Quantum Electron. 2, 367–372 (1996).
[Crossref]
M. Levesque, M. Têu, P. Tremblay, and M. Chamberland, “A novel technique to measurement the dynamic response of an optical phase modulator,” IEEE Trans. Instrum. Meas. 44, 952–957 (1995).
[Crossref]
Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In,” Appl. Phys. Lett. 66, 280–281 (1995).
[Crossref]
H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, “Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators,” J. Appl. Phys. 76, 1405–1408 (1994).
[Crossref]
T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, “Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides,” J. Lightwave Technol. 10, 51–56 (1992).
[Crossref]
S. Thaniyavarn, “Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter,” Appl. Phys. Lett. 47, 674–677 (1985).
[Crossref]
R. A. Becker, “Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility,” Appl. Phys. Lett. 45, 121–123 (1984).
[Crossref]
R. C. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
[Crossref]
R. C. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
[Crossref]
B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors,” Sens. Actuators A-Phys. 134, 339–347 (2007).
[Crossref]
R. A. Becker, “Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility,” Appl. Phys. Lett. 45, 121–123 (1984).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
M. Falk, Th. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90, 251912 (2007).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
M. Levesque, M. Têu, P. Tremblay, and M. Chamberland, “A novel technique to measurement the dynamic response of an optical phase modulator,” IEEE Trans. Instrum. Meas. 44, 952–957 (1995).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]
[PubMed]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]
[PubMed]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]
M. Falk, Th. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90, 251912 (2007).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, “Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides,” J. Lightwave Technol. 10, 51–56 (1992).
[Crossref]
C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping,” J. Selected Topics in Quantum Electron. 2, 367–372 (1996).
[Crossref]
T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, “Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides,” J. Lightwave Technol. 10, 51–56 (1992).
[Crossref]
H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, “Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators,” J. Appl. Phys. 76, 1405–1408 (1994).
[Crossref]
P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]
[PubMed]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In,” Appl. Phys. Lett. 66, 280–281 (1995).
[Crossref]
B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors,” Sens. Actuators A-Phys. 134, 339–347 (2007).
[Crossref]
M. Levesque, M. Têu, P. Tremblay, and M. Chamberland, “A novel technique to measurement the dynamic response of an optical phase modulator,” IEEE Trans. Instrum. Meas. 44, 952–957 (1995).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]
C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping,” J. Selected Topics in Quantum Electron. 2, 367–372 (1996).
[Crossref]
T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, “Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides,” J. Lightwave Technol. 10, 51–56 (1992).
[Crossref]
H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, “Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators,” J. Appl. Phys. 76, 1405–1408 (1994).
[Crossref]
H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, “Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators,” J. Appl. Phys. 76, 1405–1408 (1994).
[Crossref]
O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, “Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides,” J. Lightwave Technol. 10, 51–56 (1992).
[Crossref]
B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors,” Sens. Actuators A-Phys. 134, 339–347 (2007).
[Crossref]
H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, “Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators,” J. Appl. Phys. 76, 1405–1408 (1994).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]
M. Levesque, M. Têu, P. Tremblay, and M. Chamberland, “A novel technique to measurement the dynamic response of an optical phase modulator,” IEEE Trans. Instrum. Meas. 44, 952–957 (1995).
[Crossref]
S. Thaniyavarn, “Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter,” Appl. Phys. Lett. 47, 674–677 (1985).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
M. Levesque, M. Têu, P. Tremblay, and M. Chamberland, “A novel technique to measurement the dynamic response of an optical phase modulator,” IEEE Trans. Instrum. Meas. 44, 952–957 (1995).
[Crossref]
Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In,” Appl. Phys. Lett. 66, 280–281 (1995).
[Crossref]
Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In,” Appl. Phys. Lett. 66, 280–281 (1995).
[Crossref]
M. Falk, Th. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90, 251912 (2007).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In,” Appl. Phys. Lett. 66, 280–281 (1995).
[Crossref]
O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]
R. A. Becker, “Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility,” Appl. Phys. Lett. 45, 121–123 (1984).
[Crossref]
S. Thaniyavarn, “Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter,” Appl. Phys. Lett. 47, 674–677 (1985).
[Crossref]
E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]
M. Falk, Th. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90, 251912 (2007).
[Crossref]
R. C. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
[Crossref]
M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]
M. Levesque, M. Têu, P. Tremblay, and M. Chamberland, “A novel technique to measurement the dynamic response of an optical phase modulator,” IEEE Trans. Instrum. Meas. 44, 952–957 (1995).
[Crossref]
H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, “Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators,” J. Appl. Phys. 76, 1405–1408 (1994).
[Crossref]
T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, “Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides,” J. Lightwave Technol. 10, 51–56 (1992).
[Crossref]
C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping,” J. Selected Topics in Quantum Electron. 2, 367–372 (1996).
[Crossref]
L. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, “High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide,” Opt. Express 13, 4862–4868 (2005).
[Crossref]
[PubMed]
P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]
[PubMed]
R. C. Twu, H. H. Lee, H. Y. Hong, and C. Y. Yang, “A novel Zn-indiffused mode converter in x-cut lithium niobate,” Opt. Express 15, 15576–15582 (2007).
[Crossref]
[PubMed]
M. Carrascosa, J. Villarroel, J. Carnicero, A. Garcia-Cabanes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damages in LiNbO3,” Opt. Express 16, 115–120 (2008).
[Crossref]
[PubMed]
V. S. Sudarshanam and K. Srinivasan, “Linear readout of dynamic phase change in a fiber-optic homodyne interferometer,” Opt. Lett. 14, 140–143 (1989).
[Crossref]
[PubMed]
T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
[Crossref]
[PubMed]
G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+,Zn2+,In3+,Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[Crossref]
B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors,” Sens. Actuators A-Phys. 134, 339–347 (2007).
[Crossref]