Abstract

A 3D sensing method to retrieve an entire shape from many segmented profiles is described. Image registration is not required in this method. Advantages of this method also include (1) very high integration accuracy, (2) improved robustness, (3) reduced computational time, (4) very low computation cost for the data fusion, and (5) capability of compensating distortions of the optical system at every pixel location.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of photorealistic 3D image using optical digitizer

X. M. Liu, X. Peng, Y. K. Yin, A. M. Li, X. L. Liu, and W. Wu
Appl. Opt. 51(9) 1304-1311 (2012)

Flexible 3D reconstruction method based on phase-matching in multi-sensor system

Qingyang Wu, Baichun Zhang, Jinhui Huang, Zejun Wu, and Zeng Zeng
Opt. Express 24(7) 7299-7318 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shaped,” Appl. Opt. 22, 3977–3982 (1983).
    [Crossref] [PubMed]
  2. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [Crossref] [PubMed]
  3. D. R. Burton and M. J. Lalor, “Multichannel Fourier fringe analysis as an aid to automatic phase unwrapping,” Appl. Opt. 33, 2939–2948 (1994).
    [Crossref] [PubMed]
  4. W. H. Su and H. Liu, “Calibration-based two frequency projected fringe profilometry: a robust, accurate, and single-shot meaurement for objects with large depth discontinuities,” Opt. Express 14, 9178–9187 (2006).
    [Crossref] [PubMed]
  5. W. H. Su, “Color-encoded fringe projection for 3D shape measurements,” Opt. Express 15, 13167–13181 (2007).
    [Crossref] [PubMed]
  6. A. W. Gruen, “Geometrically constrained multiphoto matching,” Photogramm. Eng. Remote Sens. 54, 633–641 (1988).
  7. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376, (1992).
    [Crossref]
  8. C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224–231 (2000).
    [Crossref]
  9. A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
    [Crossref]
  10. E. Zappa and G. Busca, “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry,” Opt. Lasers Eng. 46, 106–116 (2008).
    [Crossref]

2008 (1)

E. Zappa and G. Busca, “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry,” Opt. Lasers Eng. 46, 106–116 (2008).
[Crossref]

2007 (1)

2006 (1)

2003 (1)

A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
[Crossref]

2000 (1)

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224–231 (2000).
[Crossref]

1994 (1)

1992 (1)

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376, (1992).
[Crossref]

1988 (1)

A. W. Gruen, “Geometrically constrained multiphoto matching,” Photogramm. Eng. Remote Sens. 54, 633–641 (1988).

1984 (1)

1983 (1)

Bilbault, J. M.

A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
[Crossref]

Brown, L. G.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376, (1992).
[Crossref]

Burton, D. R.

Busca, G.

E. Zappa and G. Busca, “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry,” Opt. Lasers Eng. 46, 106–116 (2008).
[Crossref]

Dipanda, A.

A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
[Crossref]

Gruen, A. W.

A. W. Gruen, “Geometrically constrained multiphoto matching,” Photogramm. Eng. Remote Sens. 54, 633–641 (1988).

Halioua, M.

Lalor, M. J.

Liu, H.

Liu, H. C.

Marzani, F.

A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
[Crossref]

Mutoh, K.

Reich, C.

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224–231 (2000).
[Crossref]

Ritter, R.

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224–231 (2000).
[Crossref]

Srinivasan, V.

Su, W. H.

Takeda, M.

Thesing, J.

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224–231 (2000).
[Crossref]

Woo, S.

A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
[Crossref]

Zappa, E.

E. Zappa and G. Busca, “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry,” Opt. Lasers Eng. 46, 106–116 (2008).
[Crossref]

ACM Comput. Surv. (1)

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376, (1992).
[Crossref]

Appl. Opt. (3)

Opt. Eng. (1)

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224–231 (2000).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

E. Zappa and G. Busca, “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry,” Opt. Lasers Eng. 46, 106–116 (2008).
[Crossref]

Pattern Recog. (1)

A. Dipanda, S. Woo, F. Marzani, and J. M. Bilbault, “3-D shape reconstruction in an active stereo vision system using genetic algorithms” Pattern Recog. 36, 2143–2159 (2003).
[Crossref]

Photogramm. Eng. Remote Sens. (1)

A. W. Gruen, “Geometrically constrained multiphoto matching,” Photogramm. Eng. Remote Sens. 54, 633–641 (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic setup of projected fringe profilometry.

Fig. 2.
Fig. 2.

Configuration to identify parameters of (a) the φ-to-z relationship, and (b) the z-to-x relationship or the z-to-y relationship.

Fig. 3.
Fig. 3.

Segmented measurements performed by projected fringe profilometries.

Fig. 4.
Fig. 4.

Configuration to identify parameters of the φ-to-z relationship.

Fig. 5.
Fig. 5.

Configuration to identify parameters of the z-to-x relationship and the z-to-y relationship.

Fig. 6.
Fig. 6.

Fringes on the inspected object observed by a sensing system at (a) the left point of view, and (b) the right point of view.

Fig. 7.
Fig. 7.

Phase-extraction using the phase-shifting technique for the sensing system at (a) the left point of view, and (b) the right point of view.

Fig. 8.
Fig. 8.

Appearance of unwrapped phases obtained by the sensing system at (a) the left point of view, and (b) the right point of view.

Fig. 9.
Fig. 9.

(a). Retrieved profile from the left partial view. (b). Retrieved profile from the left partial view. (c). Integrated profile from (a) and (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ x g y g ] = [ φ · d 2 π 0 ] ,
[ x + Δ x y + Δ y z + Δ z ] = [ r 11 ( p ) r 12 ( p ) r 21 ( p ) r 22 ( p ) r 31 ( p ) r 32 ( p ) ] [ φ · d 2 π 0 ] + [ t 1 ( p ) t 2 ( p ) t 3 ( p ) ] .
[ x d + Δ x d y d + Δ y d ] = [ r 11 ( c ) r 12 ( c ) r 13 ( c ) r 21 ( c ) r 22 ( c ) r 23 ( c ) ] [ x y z ] + [ t 1 ( c ) t 2 ( c ) ] .
{ x = a 0 + a 1 z y = b 0 + b 1 z ,
z = n = 0 N c n φ n .
R ( x , y ) = 1 2 + 1 4 cos ( 2 π d x x ) + 1 4 cos ( 2 π d y y ) ,
{ z = n = 0 N c n ( l ) · ( φ ( l ) ) n x = a 0 ( l ) + a 1 ( l ) z y = b 0 ( l ) + b 1 ( l ) z ,

Metrics