Abstract

Direct measurements of dark conductivity were conducted over a broad temperature range in LiNbO3:Fe. These measurements were performed on a series of crystals, which were cut from the same boule and subjected to different annealing procedures (oxidized, reduced, and as-grown). Activation energies of 0.5 eV and 1.1 eV were extracted from Arrhenius plots of the dark conductivity data. The location of the Fe2+ energy level in the band gap was determined, and is in agreement with Born’s principle. A correlation between the Maxwell relaxation times and the onset of a temperature-dependent reduction in two-beam coupling efficiency was observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968).
    [CrossRef]
  2. R. McRuer, J. Wilde, L. Hesselink, and J. Goodman, "2-Wavelength Photorefractive Dynamic Optical Interconnect," Opt. Lett. 14,1174-1176 (1989).
    [CrossRef] [PubMed]
  3. G. A. Rakuljic and V. Leyva, "Volume Holographic Narrow-Band Optical Filter," Opt. Lett. 18, 459-461 (1993).
    [CrossRef] [PubMed]
  4. B. H. Soffer, G. J. Dunning, Y. Owechko, and E. Marom, "Associative Holographic Memory with Feedback using Phase-Conjugate Mirrors," Opt. Lett. 11, 118-120 (1986).
    [CrossRef] [PubMed]
  5. S. M. Jensen and R. W. Hellwarth, "Generation of Time-Reversed Waves by Non-linear Refraction in a Waveguide," Appl. Phys. Lett. 33, 404-405 (1978).
    [CrossRef]
  6. E. Krätzig and R. Orlowski, "LiTaO3 as Holographic Storage Material," Appl. Phys. 15, 133-139 (1978).
    [CrossRef]
  7. I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
    [CrossRef]
  8. Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
    [CrossRef]
  9. K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
    [CrossRef]
  10. G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999).
    [CrossRef]
  11. A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
    [CrossRef]
  12. G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001).
    [CrossRef]
  13. E. Krätzig, "Photorefractive effects in Electrooptic Crystals," Ferroelectrics 21, 635-636 (1978).
    [CrossRef]
  14. D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
    [CrossRef]
  15. S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
    [CrossRef]
  16. L. Kovàcs and K. Polgar, Electrical Conductivity of Lithium Niobate, EMIS Datareviews Series No. 5, 109-114 (INSPEC, IEEE, London 1989).
  17. S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992).
    [CrossRef]
  18. K. Brands, D. Haertle, M. Falk, Th. Woike, and K. Buse, "Impedance Spectroscopy of Highly Iron-Doped Lithium Niobate Crystals," in Proceeding of Controlling Light with Light, OSA Topical Meeting, Lake Tahoe, CA, Oct. 14-16, 2007.
  19. G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004).
    [CrossRef]
  20. N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
    [CrossRef]
  21. M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
    [CrossRef]
  22. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
    [CrossRef]
  23. I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
    [CrossRef]
  24. D. C. Jones and G. Cook, "Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry," Opt. Commun. 180, 391-402 (2000).
    [CrossRef]
  25. R. T. Smith and F. S. Welsh, "Temperature dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. 42, 2219-2230 (1971).
    [CrossRef]
  26. A. Mansingh and A. Dhar, "The AC Conductivity and Dielectric Constant of Lithium Niobate Single Crystals," J. Phys. D: Appl. Phys. 18, 2059-2071 (1985).
    [CrossRef]
  27. R. H. Bube, Photoconductivity of Solids, (John Wiley and Sons, Inc., New York 1960).
  28. D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
    [CrossRef]
  29. C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
    [CrossRef]

2005 (1)

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

2004 (1)

G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004).
[CrossRef]

2002 (2)

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

2001 (2)

G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001).
[CrossRef]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

2000 (2)

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

D. C. Jones and G. Cook, "Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry," Opt. Commun. 180, 391-402 (2000).
[CrossRef]

1999 (1)

G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999).
[CrossRef]

1998 (1)

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
[CrossRef]

1993 (1)

1992 (1)

S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992).
[CrossRef]

1991 (1)

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

1989 (2)

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

R. McRuer, J. Wilde, L. Hesselink, and J. Goodman, "2-Wavelength Photorefractive Dynamic Optical Interconnect," Opt. Lett. 14,1174-1176 (1989).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

A. Mansingh and A. Dhar, "The AC Conductivity and Dielectric Constant of Lithium Niobate Single Crystals," J. Phys. D: Appl. Phys. 18, 2059-2071 (1985).
[CrossRef]

1984 (1)

K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
[CrossRef]

1978 (3)

S. M. Jensen and R. W. Hellwarth, "Generation of Time-Reversed Waves by Non-linear Refraction in a Waveguide," Appl. Phys. Lett. 33, 404-405 (1978).
[CrossRef]

E. Krätzig and R. Orlowski, "LiTaO3 as Holographic Storage Material," Appl. Phys. 15, 133-139 (1978).
[CrossRef]

E. Krätzig, "Photorefractive effects in Electrooptic Crystals," Ferroelectrics 21, 635-636 (1978).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

1973 (1)

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
[CrossRef]

1971 (1)

R. T. Smith and F. S. Welsh, "Temperature dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. 42, 2219-2230 (1971).
[CrossRef]

1968 (1)

F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968).
[CrossRef]

Akhmadullin, I. Sh.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
[CrossRef]

Barnes, J. O.

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

Basun, S. A.

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

Betzler, K.

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

Bunning, T. J.

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

Buse, K.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968).
[CrossRef]

Clark, M. G.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
[CrossRef]

Cook, G.

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001).
[CrossRef]

D. C. Jones and G. Cook, "Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry," Opt. Commun. 180, 391-402 (2000).
[CrossRef]

G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999).
[CrossRef]

Dhar, A.

A. Mansingh and A. Dhar, "The AC Conductivity and Dielectric Constant of Lithium Niobate Single Crystals," J. Phys. D: Appl. Phys. 18, 2059-2071 (1985).
[CrossRef]

DiSalvo, F. J.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Duignan, J. P.

G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001).
[CrossRef]

Dunning, G. J.

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Evans, D. R.

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

Feinberg, J.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
[CrossRef]

Finnan, C. J.

G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999).
[CrossRef]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968).
[CrossRef]

Gibson, J. L.

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
[CrossRef]

Golenishchev-Kutuzov, V. A.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Goodman, J.

Grabs, M.

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

Gu, C.

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

Guha, S.

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

Günter, P.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
[CrossRef]

Hellwarth, R. W.

S. M. Jensen and R. W. Hellwarth, "Generation of Time-Reversed Waves by Non-linear Refraction in a Waveguide," Appl. Phys. Lett. 33, 404-405 (1978).
[CrossRef]

Hesselink, L.

Hong, J.

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

Jensen, S. M.

S. M. Jensen and R. W. Hellwarth, "Generation of Time-Reversed Waves by Non-linear Refraction in a Waveguide," Appl. Phys. Lett. 33, 404-405 (1978).
[CrossRef]

Jones, D. C.

G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001).
[CrossRef]

D. C. Jones and G. Cook, "Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry," Opt. Commun. 180, 391-402 (2000).
[CrossRef]

G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999).
[CrossRef]

Kapphan, S.

S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992).
[CrossRef]

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Klauer, S.

S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992).
[CrossRef]

Klose, F.

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

Krätzig, E.

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

E. Krätzig, "Photorefractive effects in Electrooptic Crystals," Ferroelectrics 21, 635-636 (1978).
[CrossRef]

E. Krätzig and R. Orlowski, "LiTaO3 as Holographic Storage Material," Appl. Phys. 15, 133-139 (1978).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968).
[CrossRef]

Leyva, V.

Li, H-Y

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

MacDonald, K. R.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
[CrossRef]

Mansingh, A.

A. Mansingh and A. Dhar, "The AC Conductivity and Dielectric Constant of Lithium Niobate Single Crystals," J. Phys. D: Appl. Phys. 18, 2059-2071 (1985).
[CrossRef]

Marom, E.

McRuer, R.

Meltzer, R. S.

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

Migachev, S. A.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
[CrossRef]

Ming, Z. Z.

K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
[CrossRef]

Mironov, S. P.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
[CrossRef]

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

Nagata, H.

G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004).
[CrossRef]

Nee, I.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Niitsu, G. T.

G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004).
[CrossRef]

Orlowski, R.

E. Krätzig and R. Orlowski, "LiTaO3 as Holographic Storage Material," Appl. Phys. 15, 133-139 (1978).
[CrossRef]

Owechko, Y.

Peterson, G. E.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
[CrossRef]

Pottenger, T. P.

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

Psaltis, D.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

Rakuljic, G. A.

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Rodrigues, A. C. M.

G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004).
[CrossRef]

Saleh, M. A.

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

Schmidt, N.

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

Smith, R. T.

R. T. Smith and F. S. Welsh, "Temperature dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. 42, 2219-2230 (1971).
[CrossRef]

Soffer, B. H.

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Welsh, F. S.

R. T. Smith and F. S. Welsh, "Temperature dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. 42, 2219-2230 (1971).
[CrossRef]

Wilde, J.

Wöhlecke, M.

S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992).
[CrossRef]

Yang, Y.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

Yeh, P.

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

Appl. Phys. (2)

E. Krätzig and R. Orlowski, "LiTaO3 as Holographic Storage Material," Appl. Phys. 15, 133-139 (1978).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Appl. Phys. B (1)

G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968).
[CrossRef]

S. M. Jensen and R. W. Hellwarth, "Generation of Time-Reversed Waves by Non-linear Refraction in a Waveguide," Appl. Phys. Lett. 33, 404-405 (1978).
[CrossRef]

Ferroelectrics (1)

E. Krätzig, "Photorefractive effects in Electrooptic Crystals," Ferroelectrics 21, 635-636 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002).
[CrossRef]

J. Appl. Phys. (6)

S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

R. T. Smith and F. S. Welsh, "Temperature dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. 42, 2219-2230 (1971).
[CrossRef]

G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004).
[CrossRef]

N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989).
[CrossRef]

C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991).
[CrossRef]

J. Chem. Phys. (1)

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. Mansingh and A. Dhar, "The AC Conductivity and Dielectric Constant of Lithium Niobate Single Crystals," J. Phys. D: Appl. Phys. 18, 2059-2071 (1985).
[CrossRef]

Opt. Commun. (3)

D. C. Jones and G. Cook, "Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry," Opt. Commun. 180, 391-402 (2000).
[CrossRef]

K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984).
[CrossRef]

G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005).
[CrossRef]

Phys. Rev. B (1)

S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992).
[CrossRef]

Phys. Solid State (1)

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998).
[CrossRef]

Other (3)

R. H. Bube, Photoconductivity of Solids, (John Wiley and Sons, Inc., New York 1960).

K. Brands, D. Haertle, M. Falk, Th. Woike, and K. Buse, "Impedance Spectroscopy of Highly Iron-Doped Lithium Niobate Crystals," in Proceeding of Controlling Light with Light, OSA Topical Meeting, Lake Tahoe, CA, Oct. 14-16, 2007.

L. Kovàcs and K. Polgar, Electrical Conductivity of Lithium Niobate, EMIS Datareviews Series No. 5, 109-114 (INSPEC, IEEE, London 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Arrhenius plots of conductivity data for three LiNbO3:0.05mol.% Fe crystals: oxidized (open red squares), as-grown (solid black circles), and reduced (solid blue triangles).

Fig. 2.
Fig. 2.

OH absorption spectra of as-grown (black line), oxidized (red line), and reduced (blue line) LiNbO3:Fe.

Fig. 3.
Fig. 3.

(Left) Energy level diagram of the Fe2+/Fe3+ level in LiNbO3:Fe. (Right) Absorption spectrum (digitized from Ref. [22]) indicating the charge transfer and d-d transition in Fe2+ (5A醒5E) absorption bands. In this paper, we suggest the feature starting at 0.6 eV may be the threshold of Fe2+ photoionization. The asterisks indicate photoionization and charge transfer of the Fe2+/Fe3+ level.

Fig. 4.
Fig. 4.

The normalized steady state transmission as a function of Idark /Ip derived from the modified coupled wave theory for three values of ΓL: (a) 5, (b) 10, and (c) 15.

Fig. 5.
Fig. 5.

Measured resistivity and calculated Maxwell relaxation times as a function of temperature in the as-grown (open black circles) and oxidize (solid red circles) LiNbO3:Fe crystals. The holographically-measured Maxwell relaxation times (open black triangles) are plotted against the right vertical axis only.

Fig. 6.
Fig. 6.

Transmitted power as a function of time (two-beam coupling efficiencies) for various temperatures: (top to bottom) 473 K (red line), 448 K (green line), 423 K (blue line), 398 K (orange line), and 294 K (black line).

Tables (1)

Tables Icon

TABLE I: The values for the concentrations are in terms of 1018 cm−3 [15]. The term as-grown is synonymous with air-grown as found in the reference.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ d e ΔE kT
dI p dL = α I p Γ I p I s I p + I s + I dark
dI s dL = + α I s Γ I p I s I p + I s + I dark

Metrics