Abstract

We have demonstrated frequency modulation saturation spectroscopy of the ν13 band of ammonia in hollow-core photonic bandgap fibers (HC-PBFs). Previously blended lines have been resolved and the corresponding molecular transitions assigned. Cross-over resonances are observed between transitions that do not share a common level. We have measured the pressure dependence of the line shape and determined the collisional self-broadening coefficients for ammonia. The many absorption lines of ammonia in the 1.5 µm wavelength region are potential frequency references lines for optical communication as well as candidates for spectroscopic trace gas monitoring.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microwave optical double resonance spectroscopy of ammonia in a hollow-core fiber

Jan C. Petersen and Jan Hald
Opt. Express 18(8) 7955-7964 (2010)

Studies of saturated absorption and measurements of optical frequency for lines in the ν1 + ν3 and ν1 + 2ν4 bands of ammonia at 1.5 μm

A. Czajkowski, A. J. Alcock, J. E. Bernard, A. A. Madej, M. Corrigan, and S. Chepurov
Opt. Express 17(11) 9258-9269 (2009)

Terahertz coherent transients from methyl chloride vapor

H. Harde, N. Katzenellenbogen, and D. Grischkowsky
J. Opt. Soc. Am. B 11(6) 1018-1030 (1994)

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [Crossref]
  2. J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
    [Crossref] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
    [Crossref] [PubMed]
  4. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).
  5. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
    [Crossref] [PubMed]
  6. G. C. Bjorklund, “Frequency-modulation spectroscopy - new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [Crossref] [PubMed]
  7. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 µm,” Opt. Lett. 19, 840–842 (1994).
    [Crossref] [PubMed]
  8. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1524nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
    [Crossref] [PubMed]
  9. L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
    [Crossref]
  10. L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
    [Crossref]
  11. M. E. Webber, D. S. Baer, and R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
    [Crossref]
  12. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [Crossref]
  13. R. M. Lees private communications.
  14. E. E. Uzgiris, J. L. Hall, and R. L. Barger, “Precision Infrared Zeeman Spectra of CH4 Studied by Laser-Saturated Absorption,” Phys. Rev. Lett. 26, 289–293 (1971).
    [Crossref]
  15. S. P. Belov, S. Urban, and G. Winnewisser, “Hyperfine Structure of Rotation-Inversion Levels in the Excited ν2 State of Ammonia,” J. Mol. Spectrosc. 189, 1–7 (1998).
    [Crossref] [PubMed]
  16. Ch. Chardonnet and Ch. J. Bordé, “Hyperfine Interactions in the ν3 Band of Osmium Tetroxide: Accurate Determination of the Spin-Rotation Constant by Crossover Resonance Spectroscopy,” J. Mol. Spectrosc. 167, 71–98 (1994).
    [Crossref]
  17. C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
    [Crossref]
  18. S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
    [Crossref]
  19. J. O. Henningsen and J. C. Petersen, “Infrared-microwave double resonance in methanol: coherent effects and molecular parameters,” J. Opt. Soc. Am. B 5, 1848–1857 (1988).
    [Crossref]
  20. J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
    [Crossref]
  21. G. Modugno and C. Corsi,“Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. & Technol. 40, 93–99 (1999).
    [Crossref]
  22. M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
    [Crossref]
  23. A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, in “Frequency standards and metrology,” ed. by A. De-Marchi, Springer Berlin (1989), 212.

2007 (1)

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

2006 (3)

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

2005 (3)

2004 (1)

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

2001 (1)

1999 (1)

G. Modugno and C. Corsi,“Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. & Technol. 40, 93–99 (1999).
[Crossref]

1998 (1)

S. P. Belov, S. Urban, and G. Winnewisser, “Hyperfine Structure of Rotation-Inversion Levels in the Excited ν2 State of Ammonia,” J. Mol. Spectrosc. 189, 1–7 (1998).
[Crossref] [PubMed]

1997 (1)

M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
[Crossref]

1994 (2)

Ch. Chardonnet and Ch. J. Bordé, “Hyperfine Interactions in the ν3 Band of Osmium Tetroxide: Accurate Determination of the Spin-Rotation Constant by Crossover Resonance Spectroscopy,” J. Mol. Spectrosc. 167, 71–98 (1994).
[Crossref]

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 µm,” Opt. Lett. 19, 840–842 (1994).
[Crossref] [PubMed]

1993 (1)

L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[Crossref]

1988 (1)

1984 (1)

S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
[Crossref]

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

1980 (1)

1978 (1)

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

1971 (1)

E. E. Uzgiris, J. L. Hall, and R. L. Barger, “Precision Infrared Zeeman Spectra of CH4 Studied by Laser-Saturated Absorption,” Phys. Rev. Lett. 26, 289–293 (1971).
[Crossref]

Acef, O.

A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, in “Frequency standards and metrology,” ed. by A. De-Marchi, Springer Berlin (1989), 212.

Anderson, C. J.

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

Anderson, L. W.

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

Baer, D. S.

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Balling, P.

Barger, R. L.

E. E. Uzgiris, J. L. Hall, and R. L. Barger, “Precision Infrared Zeeman Spectra of CH4 Studied by Laser-Saturated Absorption,” Phys. Rev. Lett. 26, 289–293 (1971).
[Crossref]

Belov, S. P.

S. P. Belov, S. Urban, and G. Winnewisser, “Hyperfine Structure of Rotation-Inversion Levels in the Excited ν2 State of Ammonia,” J. Mol. Spectrosc. 189, 1–7 (1998).
[Crossref] [PubMed]

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Birks, T.A.

F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Bjorklund, G. C.

Bordé, C. J.

A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, in “Frequency standards and metrology,” ed. by A. De-Marchi, Springer Berlin (1989), 212.

Bordé, Ch. J.

Ch. Chardonnet and Ch. J. Bordé, “Hyperfine Interactions in the ν3 Band of Osmium Tetroxide: Accurate Determination of the Spin-Rotation Constant by Crossover Resonance Spectroscopy,” J. Mol. Spectrosc. 167, 71–98 (1994).
[Crossref]

Chardonnet, C.

A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, in “Frequency standards and metrology,” ed. by A. De-Marchi, Springer Berlin (1989), 212.

Chardonnet, Ch.

Ch. Chardonnet and Ch. J. Bordé, “Hyperfine Interactions in the ν3 Band of Osmium Tetroxide: Accurate Determination of the Spin-Rotation Constant by Crossover Resonance Spectroscopy,” J. Mol. Spectrosc. 167, 71–98 (1994).
[Crossref]

Clairon, A.

A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, in “Frequency standards and metrology,” ed. by A. De-Marchi, Springer Berlin (1989), 212.

Corsi, C.

G. Modugno and C. Corsi,“Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. & Technol. 40, 93–99 (1999).
[Crossref]

Corwin, K. L.

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

D’Cunha, R.

S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
[Crossref]

de Labachelerie, M.

Faheem, M.

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

Filippelli, A. R.

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

Fischer, M.

Gibb, J. S.

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

Hald, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

E. E. Uzgiris, J. L. Hall, and R. L. Barger, “Precision Infrared Zeeman Spectra of CH4 Studied by Laser-Saturated Absorption,” Phys. Rev. Lett. 26, 289–293 (1971).
[Crossref]

Hancock, G.

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

Hanson, R. K.

Hegelund, F.

L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[Crossref]

Henningsen, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

Henningsen, J. O.

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Holley, T. K.

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

Holzwarth, R.

Knabe, K.

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Kubina, P.

Lawler, J. E.

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

Lees, R. M.

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

R. M. Lees private communications.

Liu, Z.

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

Lundsberg-Nielsen, L.

L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[Crossref]

Modugno, G.

G. Modugno and C. Corsi,“Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. & Technol. 40, 93–99 (1999).
[Crossref]

Mrtz, M.

M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
[Crossref]

Nakagawa, K.

Naweed, A.

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

Nicolaisen, F. M.

L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[Crossref]

Ohtsu, M.

Palm, P.

M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
[Crossref]

Papousek, D.

S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
[Crossref]

Petersen, J. C.

Peverall, R.

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

Rao, K. N.

S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
[Crossref]

Ritchie, G. A. D.

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Russell, L. J.

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Thapa, R.

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

Tretyakov, M. Yu.

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

Urban, S.

S. P. Belov, S. Urban, and G. Winnewisser, “Hyperfine Structure of Rotation-Inversion Levels in the Excited ν2 State of Ammonia,” J. Mol. Spectrosc. 189, 1–7 (1998).
[Crossref] [PubMed]

S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
[Crossref]

Urban, W.

M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
[Crossref]

Uzgiris, E. E.

E. E. Uzgiris, J. L. Hall, and R. L. Barger, “Precision Infrared Zeeman Spectra of CH4 Studied by Laser-Saturated Absorption,” Phys. Rev. Lett. 26, 289–293 (1971).
[Crossref]

Wappelhorst, M. H.

M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
[Crossref]

Weaver, O. L

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).

Webber, M. E.

Winnewisser, G.

S. P. Belov, S. Urban, and G. Winnewisser, “Hyperfine Structure of Rotation-Inversion Levels in the Excited ν2 State of Ammonia,” J. Mol. Spectrosc. 189, 1–7 (1998).
[Crossref] [PubMed]

Xu, L. H.

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

Yakovlev, I.

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. H. Wappelhorst, M. Mrtz, P. Palm, and W. Urban,“Very high resolution CO spectrometer and first sub–Doppler line-shape studies near 60 THZ (5 µm),” Appl. Phys. B 65, 25–32 (1997).
[Crossref]

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Can. J. Phys. (1)

S. Urban, R. D’Cunha, K. N. Rao, and D. Papousek, “The Δk = 2 “forbidden band” and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984).
[Crossref]

Eur. Phys. J. D (1)

J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, and L. J. Russell,“Diode laser based detection and determination of pressure-induced broadening coefficients in the ν1+ν3 combination band of ammonia,” Eur. Phys. J. D 28, 59–66 (2004).
[Crossref]

Infrared Phys. & Technol. (1)

G. Modugno and C. Corsi,“Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. & Technol. 40, 93–99 (1999).
[Crossref]

Infrared Phys. Technol. (1)

L. H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 µm region,” Infrared Phys. Technol. 45, 31–45 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Mol. Spectrosc. (3)

L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[Crossref]

S. P. Belov, S. Urban, and G. Winnewisser, “Hyperfine Structure of Rotation-Inversion Levels in the Excited ν2 State of Ammonia,” J. Mol. Spectrosc. 189, 1–7 (1998).
[Crossref] [PubMed]

Ch. Chardonnet and Ch. J. Bordé, “Hyperfine Interactions in the ν3 Band of Osmium Tetroxide: Accurate Determination of the Spin-Rotation Constant by Crossover Resonance Spectroscopy,” J. Mol. Spectrosc. 167, 71–98 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T.A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and A. R. Filippelli, “Radiative-decay-induced four-level crossover signals in saturation spectroscopy,” Phys. Rev. A 17, 2099–2101 (1978).
[Crossref]

Phys. Rev. Lett. (2)

E. E. Uzgiris, J. L. Hall, and R. L. Barger, “Precision Infrared Zeeman Spectra of CH4 Studied by Laser-Saturated Absorption,” Phys. Rev. Lett. 26, 289–293 (1971).
[Crossref]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[Crossref] [PubMed]

Other (2)

R. M. Lees private communications.

A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, in “Frequency standards and metrology,” ed. by A. De-Marchi, Springer Berlin (1989), 212.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for FM saturation spectroscopy in a HC-PBF.

Fig. 2.
Fig. 2.

FM saturation signals of 14NH3 in a 3.5-m HC-PBF at a pressure of 2 hPa. The line corresponds to the PP(4,3)a transition at 1526.9975 nm. Blue dots represent the measured signal and solid red line the fit. The residual is shown in the bottom panel.

Fig. 3.
Fig. 3.

FM saturation signals of 14NH3 in a 3.5-m HC-PBF at a pressure of 2 hPa. The lines correspond to the PP(6,6)a and PP(5,3)a transitions at 1531.6815 nm and 1531.6824 nm, respectively.

Fig. 4.
Fig. 4.

Saturated absorption signals of the PP(4,2)s and PP(4,2)a absorption lines at 1528.7237 nm and 1528.7278 nm, respectively. A cross-over resonance is observed between the two lines. The pressure used was 63 Pa

Fig. 5.
Fig. 5.

Energy level diagram of ammonia including the PP(4,2)s and PP(4,2)a transitions at 1528.7278 nm and 1528.7237 nm. The ground state inversion is 0.7235628 cm−1

Fig. 6.
Fig. 6.

Normalized amplitudes of the FM saturated signals as a function of pressure. The measurement results for the 1528.7278 nm line is indicated with green diamonds (left scale), for the 1528.7237 nm line with blue circles (left scale) and for the crossover resonance with red squares (right scale).

Fig. 7.
Fig. 7.

Average HWHM linewidth of the resonances shown in Fig. 4 as a function of pressure. The solid line is the corresponding linear fit.

Fig. 8.
Fig. 8.

Ratio between the crossover signal and the signal at 1528.7237 nm as a function of pressure. The line is a linear fit to the measured data.

Tables (1)

Tables Icon

Table 1. Selected lines observed by FM saturation spectroscopy

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I FM ( v ) = α [ ( L L + ) sin φ + ( D + 2 D * + D ) cos φ ]
L j = Γ 2 Γ 2 + ( v j v 0 ) 2
D j = Γ ( v j v 0 ) Γ 2 + ( v j v 0 ) 2

Metrics