Abstract

We investigate multi-color spontaneous emission from quantum-dot-quantum-well heteronanocrystals made of onion-like (CdSe)ZnS/CdSe/ZnS (core)shell/shell/shell structures, with our theoretical results explaining experimental measurements for the first time. In such multi-layered heteronanocrystals, we discover that the carrier localization is tuned from type-1-like to type-2-like localization by controlling CdSe and ZnS shell thicknesses, and that 3-monolayer ZnS barriers are not necessarily sufficient for carrier localization, unlike in conventional (CdSe)ZnS (core)shell structures. We demonstrate that exciton localization in distinct layers of (CdSe)ZnS/CdSe/ZnS heteronanocrystals with high transition probability (for n=1 states in CdSe core and n=2 states in CdSe shell) is key to their multi-color emission.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science 271, 933-937 (1996).
    [CrossRef]
  2. R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
    [CrossRef] [PubMed]
  3. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
    [CrossRef] [PubMed]
  4. S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
    [CrossRef]
  5. E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15, 1128-1134 (2007).
    [CrossRef] [PubMed]
  6. H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
    [CrossRef]
  7. S. Nizamoglu, G. Zengin, and H. V. Demir, "Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index" Appl. Phys. Lett. 92, 031102 (2008).
    [CrossRef]
  8. H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
    [CrossRef]
  9. H. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18, 193-195 (2006).
    [CrossRef]
  10. M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
    [CrossRef] [PubMed]
  11. S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A: Pure Appl. Opt. 9, S419-S424 (2007).
    [CrossRef]
  12. S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
    [CrossRef]
  13. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
    [CrossRef] [PubMed]
  14. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
    [CrossRef]
  15. X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
    [CrossRef]
  16. D. Dorfs and A. Eychmüller, "Multishell Semiconductor Nanocrystals," Z. Phys. Chem. 220, 1539 (2006).
    [CrossRef]
  17. A. Eychmüller, A. Mews, and H. Weller, "A Quantum Dot Quantum Well: CdS/HgS/CdS," Chem. Phys. Lett. 208, 59 (1993).
    [CrossRef]
  18. D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
    [CrossRef]
  19. R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).
  20. S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
    [CrossRef]
  21. X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
    [CrossRef]
  22. J. Schrier and L. Wang, "Electronic structure of nanocrystal quantum-dot quantum wells," Phys. Rev. Lett. B 73, 245332 (2006).
  23. D. Battaglia, B. Blackman, and X. Peng, "Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal," J. Am. Chem. Soc. 127, 10889 (2005).
    [CrossRef] [PubMed]
  24. S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
    [CrossRef]
  25. F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
    [CrossRef]
  26. M. G. Burt, "The justification for applying the effective-mass approximation to microstructures," J. Phys. Condens. Matter 4, 6651 (1992).
    [CrossRef]
  27. D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
    [CrossRef]
  28. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
    [CrossRef] [PubMed]
  29. L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
    [CrossRef]
  30. D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
    [CrossRef]
  31. K. Chang and J. Xia, "Spatially separated excitons in quantum-dot quantum well structures," Phys. Rev. B 57, 16 (1998).
    [CrossRef]
  32. U. Hotje, C. Rose, and M. Binnewies, "Lattice constants and molar volumes in the system ZnS, ZnSe, CdS, CdSe," Solid State Sci. 5, 1259 (2003).
    [CrossRef]
  33. S. Q. Wang, "First-principles study of the anisotropic thermal expansion of wurtzite ZnS," Appl. Phys. Lett 88, 061902 (2006).
    [CrossRef]
  34. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
    [CrossRef]
  35. S. V. Gaponenko, "Optical properties of semiconductor nanocrystals" (Cambridge University Press, 1998)
  36. V. I. Klimov (ed.), "Semiconductor and metal nanocrystals: Synthesis and electronic and optical properties" (Marcel Dekker, 2003).

2008

S. Nizamoglu, G. Zengin, and H. V. Demir, "Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index" Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

2007

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A: Pure Appl. Opt. 9, S419-S424 (2007).
[CrossRef]

S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
[CrossRef]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
[CrossRef] [PubMed]

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
[CrossRef]

E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15, 1128-1134 (2007).
[CrossRef] [PubMed]

2006

S. Q. Wang, "First-principles study of the anisotropic thermal expansion of wurtzite ZnS," Appl. Phys. Lett 88, 061902 (2006).
[CrossRef]

J. Schrier and L. Wang, "Electronic structure of nanocrystal quantum-dot quantum wells," Phys. Rev. Lett. B 73, 245332 (2006).

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

H. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18, 193-195 (2006).
[CrossRef]

D. Dorfs and A. Eychmüller, "Multishell Semiconductor Nanocrystals," Z. Phys. Chem. 220, 1539 (2006).
[CrossRef]

2005

D. Battaglia, B. Blackman, and X. Peng, "Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal," J. Am. Chem. Soc. 127, 10889 (2005).
[CrossRef] [PubMed]

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

2004

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
[CrossRef]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

2003

D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
[CrossRef]

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

U. Hotje, C. Rose, and M. Binnewies, "Lattice constants and molar volumes in the system ZnS, ZnSe, CdS, CdSe," Solid State Sci. 5, 1259 (2003).
[CrossRef]

2001

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).

1998

K. Chang and J. Xia, "Spatially separated excitons in quantum-dot quantum well structures," Phys. Rev. B 57, 16 (1998).
[CrossRef]

1997

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
[CrossRef]

1996

A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science 271, 933-937 (1996).
[CrossRef]

1994

D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
[CrossRef]

1993

A. Eychmüller, A. Mews, and H. Weller, "A Quantum Dot Quantum Well: CdS/HgS/CdS," Chem. Phys. Lett. 208, 59 (1993).
[CrossRef]

1992

M. G. Burt, "The justification for applying the effective-mass approximation to microstructures," J. Phys. Condens. Matter 4, 6651 (1992).
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
[CrossRef] [PubMed]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

Akin, O.

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

Ali, M.

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Alivisatos, A. P.

X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
[CrossRef]

A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science 271, 933-937 (1996).
[CrossRef]

Anikeeva, P. O.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

Balet, L. P.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

Basche, T.

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

Basché, T.

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

Battaglia, D.

D. Battaglia, B. Blackman, and X. Peng, "Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal," J. Am. Chem. Soc. 127, 10889 (2005).
[CrossRef] [PubMed]

D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
[CrossRef]

Bawendi, M. G.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Bezel, I. V.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

Binnewies, M.

U. Hotje, C. Rose, and M. Binnewies, "Lattice constants and molar volumes in the system ZnS, ZnSe, CdS, CdSe," Solid State Sci. 5, 1259 (2003).
[CrossRef]

Blackman, B.

D. Battaglia, B. Blackman, and X. Peng, "Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal," J. Am. Chem. Soc. 127, 10889 (2005).
[CrossRef] [PubMed]

Bryant, G. W.

R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).

Burke, S. J.

R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).

Burt, M. G.

M. G. Burt, "The justification for applying the effective-mass approximation to microstructures," J. Phys. Condens. Matter 4, 6651 (1992).
[CrossRef]

Chakraborty, S.

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Chang, K.

K. Chang and J. Xia, "Spatially separated excitons in quantum-dot quantum well structures," Phys. Rev. B 57, 16 (1998).
[CrossRef]

Chattopadhyay, S.

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Chen, H.

H. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18, 193-195 (2006).
[CrossRef]

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Demir, H. V.

S. Nizamoglu, G. Zengin, and H. V. Demir, "Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index" Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
[CrossRef]

S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A: Pure Appl. Opt. 9, S419-S424 (2007).
[CrossRef]

E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15, 1128-1134 (2007).
[CrossRef] [PubMed]

S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
[CrossRef]

Dorfs, D.

D. Dorfs and A. Eychmüller, "Multishell Semiconductor Nanocrystals," Z. Phys. Chem. 220, 1539 (2006).
[CrossRef]

D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
[CrossRef]

El-Sayed, M. A.

R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).

Eychmuller, A.

D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
[CrossRef]

Eychmüller, A.

D. Dorfs and A. Eychmüller, "Multishell Semiconductor Nanocrystals," Z. Phys. Chem. 220, 1539 (2006).
[CrossRef]

D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
[CrossRef]

A. Eychmüller, A. Mews, and H. Weller, "A Quantum Dot Quantum Well: CdS/HgS/CdS," Chem. Phys. Lett. 208, 59 (1993).
[CrossRef]

Feldmann, J.

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

Goupalov, S. V.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Haase, M.

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Henschel, H.

D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
[CrossRef]

Holder, E.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

Hong, H.

H. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18, 193-195 (2006).
[CrossRef]

Hotje, U.

U. Hotje, C. Rose, and M. Binnewies, "Lattice constants and molar volumes in the system ZnS, ZnSe, CdS, CdSe," Solid State Sci. 5, 1259 (2003).
[CrossRef]

Hsu, C.

H. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18, 193-195 (2006).
[CrossRef]

Huang, C.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Huang, J.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Huyal, I. O.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
[CrossRef] [PubMed]

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Kadavanich, A. V.

X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
[CrossRef]

Klar, T. A.

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
[CrossRef] [PubMed]

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

Knoll, W.

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

Koberling, F.

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

Kolb, U.

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

Koleske, D. D.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

Kolny, J.

D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
[CrossRef]

Kornowski, A.

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

Kos, S.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

Kumar, A.

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Li, J. J.

D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
[CrossRef]

Little, R. B.

R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).

Liu, I.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Lu, C.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Mayilo, S.

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

Mews, A.

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
[CrossRef]

A. Eychmüller, A. Mews, and H. Weller, "A Quantum Dot Quantum Well: CdS/HgS/CdS," Chem. Phys. Lett. 208, 59 (1993).
[CrossRef]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Mutlugun, E.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15, 1128-1134 (2007).
[CrossRef] [PubMed]

Nag, A.

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
[CrossRef] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

Nizamoglu, S.

S. Nizamoglu, G. Zengin, and H. V. Demir, "Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index" Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A: Pure Appl. Opt. 9, S419-S424 (2007).
[CrossRef]

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
[CrossRef]

S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
[CrossRef]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Ozel, T.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
[CrossRef]

Peng, X.

D. Battaglia, B. Blackman, and X. Peng, "Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal," J. Am. Chem. Soc. 127, 10889 (2005).
[CrossRef] [PubMed]

D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
[CrossRef]

Peng, X. G.

X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
[CrossRef]

Petruska, M. A.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

Philipp, G.

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

Pietryga, J. M.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Piryatinski, A.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

Potapova, I.

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

Rogach, A. L.

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

Rose, C.

U. Hotje, C. Rose, and M. Binnewies, "Lattice constants and molar volumes in the system ZnS, ZnSe, CdS, CdSe," Solid State Sci. 5, 1259 (2003).
[CrossRef]

Sapra, S.

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Sari, E.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
[CrossRef]

Sarma, D. D.

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Schaller, R. D.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Schlamp, M. C.

X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
[CrossRef]

Schoss, D.

D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
[CrossRef]

Schrier, J.

J. Schrier and L. Wang, "Electronic structure of nanocrystal quantum-dot quantum wells," Phys. Rev. Lett. B 73, 245332 (2006).

Shiao, W.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Smith, D. L.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

Soganci, I. M.

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15, 1128-1134 (2007).
[CrossRef] [PubMed]

Su, W.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Talapin, D. V.

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

Tian, N.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

Tretiak, S.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

Wang, L.

J. Schrier and L. Wang, "Electronic structure of nanocrystal quantum-dot quantum wells," Phys. Rev. Lett. B 73, 245332 (2006).

Wang, S. Q.

S. Q. Wang, "First-principles study of the anisotropic thermal expansion of wurtzite ZnS," Appl. Phys. Lett 88, 061902 (2006).
[CrossRef]

Wang, Y.

D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
[CrossRef]

Weller, H.

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
[CrossRef]

A. Eychmüller, A. Mews, and H. Weller, "A Quantum Dot Quantum Well: CdS/HgS/CdS," Chem. Phys. Lett. 208, 59 (1993).
[CrossRef]

Xia, J.

K. Chang and J. Xia, "Spatially separated excitons in quantum-dot quantum well structures," Phys. Rev. B 57, 16 (1998).
[CrossRef]

Xiea, R.

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

Yang, C. C.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Yeh, D.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

Zengin, G.

S. Nizamoglu, G. Zengin, and H. V. Demir, "Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index" Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

Zhang, Y.

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

Zhong, X.

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

Adv. Mater.

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, "Bright white light emission from semiconductor nanocrystals: by chance and by design," Adv. Mater. 19, 569 (2007).
[CrossRef]

Angew. Chem. Int. Ed.

D. Battaglia, J. J. Li, Y. Wang, and X. Peng, "Colloidal two-dimensional systems: CdSe quantum shells and wells," Angew. Chem. Int. Ed. 42, 5035-5039 (2003).
[CrossRef]

Appl. Phys. Lett

S. Q. Wang, "First-principles study of the anisotropic thermal expansion of wurtzite ZnS," Appl. Phys. Lett 88, 061902 (2006).
[CrossRef]

Appl. Phys. Lett.

S. Nizamoglu, G. Zengin, and H. V. Demir, "Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index" Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

Chem. Mater.(Communication)

X. Zhong, R. Xiea, Y. Zhang, T. Basché, and W. Knoll, "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals," Chem. Mater. (Communication) 17, 4038-4042 (2005).
[CrossRef]

Chem. Phys.

R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. J. Burke, "Formation of quantum-dot quantum-well heteronanostructures with large latticemismatch: ZnS/CdS/ZnS," Chem. Phys. 114, 1813 (2001).

Chem. Phys. Lett.

A. Eychmüller, A. Mews, and H. Weller, "A Quantum Dot Quantum Well: CdS/HgS/CdS," Chem. Phys. Lett. 208, 59 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Chen, D. Yeh, C. Lu, C. Huang, W. Shiao, J. Huang, C. C. Yang, I. Liu, and W. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photon. Technol. Lett. 18, 1430-1432 (2006).
[CrossRef]

H. Chen, C. Hsu, and H. Hong, "InGaN-CdSe-ZnSe quantum dots white LEDs," IEEE Photon. Technol. Lett. 18, 193-195 (2006).
[CrossRef]

J. Am. Chem. Soc.

D. Battaglia, B. Blackman, and X. Peng, "Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal," J. Am. Chem. Soc. 127, 10889 (2005).
[CrossRef] [PubMed]

X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility," J. Am. Chem. Soc. 119, 7019 (1997).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A: Pure Appl. Opt. 9, S419-S424 (2007).
[CrossRef]

J. Phys. Chem. B

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B 108, 10625 (2004).
[CrossRef]

F. Koberling, U. Kolb, G. Philipp, I. Potapova, T. Basche, and A. Mews, "Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals," J. Phys. Chem. B 107, 7463-7471 (2003).
[CrossRef]

D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, "Multilayered Nanoheterostructures: Theory and Experiment," J. Phys. Chem. B 108, 1578 (2004).
[CrossRef]

J. Phys. Condens. Matter

M. G. Burt, "The justification for applying the effective-mass approximation to microstructures," J. Phys. Condens. Matter 4, 6651 (1992).
[CrossRef]

Nano Lett.

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes," Nano Lett. 4, 1485 (2004).
[CrossRef]

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine - Trioctylphosphine Oxide - Trioctylphospine Mixture," Nano Lett. 1, 207-211 (2001).
[CrossRef]

Nanotechnology

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
[CrossRef]

S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
[CrossRef]

M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, and D. D. Sarma, "White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio," Nanotechnology 18, 075401 (2007).
[CrossRef] [PubMed]

Nature

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A.Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441 (2007).
[CrossRef] [PubMed]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, "Energy- transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
[CrossRef] [PubMed]

New J. Phys.

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

Opt. Express

Opt. Express.

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, "Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity," Opt. Express. 15, 14289-14298 (2007).
[CrossRef] [PubMed]

Phys. Rev. B

D. Schoss, A. Mews, A. Eychmüller, and H. Weller, "The Quantum Dot Quantum Well CdS/HgS/CdS: Theory and Experiment," Phys. Rev. B 49, 24 (1994).
[CrossRef]

K. Chang and J. Xia, "Spatially separated excitons in quantum-dot quantum well structures," Phys. Rev. B 57, 16 (1998).
[CrossRef]

Phys. Rev. Lett.

R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, "Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions," Phys. Rev. Lett. 95, 196401 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. B

J. Schrier and L. Wang, "Electronic structure of nanocrystal quantum-dot quantum wells," Phys. Rev. Lett. B 73, 245332 (2006).

Science

A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science 271, 933-937 (1996).
[CrossRef]

State Scieces

U. Hotje, C. Rose, and M. Binnewies, "Lattice constants and molar volumes in the system ZnS, ZnSe, CdS, CdSe," Solid State Sci. 5, 1259 (2003).
[CrossRef]

Z. Phys. Chem.

D. Dorfs and A. Eychmüller, "Multishell Semiconductor Nanocrystals," Z. Phys. Chem. 220, 1539 (2006).
[CrossRef]

Other

S. V. Gaponenko, "Optical properties of semiconductor nanocrystals" (Cambridge University Press, 1998)

V. I. Klimov (ed.), "Semiconductor and metal nanocrystals: Synthesis and electronic and optical properties" (Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of an onion-like (CdSe)ZnS/CdSe/ZnS heteronanocrystal structure (with violet regions representing CdSe and green regions representing ZnS) along with the corresponding radial energy diagram (not drawn to scale).

Fig 2.
Fig 2.

2S relative probability distribution of electron |ψ e,200(r)|2 (in blue) and hole |ψ h,200(r)|2 (in red) for n=2, l = 0, m = 0 states (with their peaks normalized to 1 for easy visualization) across the radial potential profile V(r) (in black) of the entire heteronanocrystal. On each plot, the thicknesses of the inner ZnS shell (the first shell) and the CdSe shell (the second shell) in monolayers (e.g., x ML ZnS and y ML CdSe) are labeled as a pair (in the convention of x-y) in our notation. (For instance, 1-3 indicates (CdSe)ZnS/CdSe/ZnS heteronanocrystal with a 1-monolayer ZnS inner shell and a 3-monolayer CdSe shell).

Fig. 3.
Fig. 3.

1S relative probability distribution of electron |ψ e,100(r)|2 (in blue) and hole |ψ h,100(r)|2 (in red) for n=1, l = 0, m = 0 states (with their peaks normalized to 1 for easy visualization) across the radial potential profile V(r) (in black) of the entire heteronanocrystal. On each plot, the thicknesses of the inner ZnS shell (the first shell) and the CdSe shell (the second shell) in monolayers (e.g., x ML ZnS and y ML CdSe) are labeled as a pair (in the convention of x-y) in our notation. (For instance, 1-3 indicates (CdSe)ZnS/CdSe/ZnS heteronanocrystal with a 1-monolayer ZnS shell and a 3-monolayer CdSe shell).

Fig. 4.
Fig. 4.

The electron-hole spatial wavefunction multiplication (exciton) distribution |ψ e,n00(r)ψ h,n00(r)| for n=1 (in red) and n=2 (in blue), l = 0, m = 0 states (with their peaks normalized to 1 for easy visualization) across the radial potential profile V(r) (in black) of the entire heteronanocrystal. On each plot, the thicknesses of the inner ZnS shell (the first shell) and the CdSe shell (the second shell) in monolayers (e.g., x ML ZnS and y ML CdSe) are labeled as a pair (in the convention of x-y) in our notation. (For instance, 1-3 indicates (CdSe)ZnS/CdSe/ZnS heteronanocrystal with a 1-monolayer ZnS shell and a 3-monolayer CdSe shell).

Fig. 5.
Fig. 5.

Theoretical energy level shifts of (CdSe)ZnS/CdSe/ZnS heteronanocrystal for different thicknesses of the ZnS shell and the CdSe shell with respect to the mere core CdSe NC (a) without and (b) with taking the Coulomb interaction into account.

Tables (6)

Tables Icon

Table 1. Material parameters for CdSe and ZnS.

Tables Icon

Table 2. 1S electron-hole wavefunction overlaps <ψ e,100(r)|ψ h,100(r)> for different numbers of monolayers of the ZnS shell in rows and the CdSe shell in columns at n=1 states. In parenthesis in each cell where overlap is presented, the thicknesses of the inner ZnS shell (the first shell) and the CdSe shell (the second shell) in monolayers (e.g., x ML ZnS and y ML CdSe) are indicated as a pair (in our notation of x-y.) (For instance, 1-3 represents (CdSe)ZnS/CdSe/ZnS heteronanocrystal with a 1-monolayer ZnS shell and a 3-monolayer of CdSe shell).

Tables Icon

Table 3. 2S electron-hole wavefunction overlaps at n=2 states <ψ e,200(r)|ψ h,200(r)> for different numbers of monolayers of the ZnS shell in rows and the CdSe shell in columns. In parenthesis in each cell where overlap is presented, the thicknesses of the inner ZnS shell (the first shell) and the CdSe shell (the second shell) in monolayers (e.g., x ML ZnS and y ML CdSe) are indicated as a pair (in our convention of x-y). (For instance, 1-3 represents (CdSe)ZnS/CdSe/ZnS heteronanocrystal with a 1-monolayer ZnS shell and a 3-monolayer CdSe shell.)

Tables Icon

Table 4. Exciton binding energy due to the Coulomb interaction at n=1 states.

Tables Icon

Table 5. Exciton binding energy due to the Coulomb interaction at n=2 states.

Tables Icon

Table 6. Comparison of our theoretical PL peaks and the experimental PL peaks for different CdSe and ZnS thicknesses for 2S transitions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ψ nlm ( r , θ , ϕ ) = R nl ( r ) Y lm ( θ , ϕ )
R nl , q ( r ) | r = r q = R nl , q + 1 ( r ) | r = r q
1 m q * d R nl , q ( r ) dr | r = r q = 1 m q + 1 * d R nl , q + 1 ( r ) dr | r = r q
E c = d r e d r h ψ e * ( r e ) ψ h * ( r h ) ψ e ( r e ) ψ h ( r h ) r e r h ε ( r e , r h )
E c = e 2 4 π ε 0 d r e d r h r e 2 r h 2 R e ( r e ) 2 R h ( r h ) 2 max r e , r h ε r ¯ ( r e , r h )

Metrics