Abstract

We report a collinear output and tunable dual-wavelength CW Ti:sapphire laser with a simple cavity configuration. The wavelength splitting range is easily tuned from 10 nm to 110 nm, which provides 56 THz bandwidth for terahertz generation. The total output power of two colors with the spatial mode of TEM00 is between 700 mW and 300 mW, for small and large wavelength splittings, respectively, under 5 W argon-ion laser pumping.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, "Picosecond optoelectronic switching and gating in silicon, " Appl. Phys. Lett. 26, 101-103 (1975).
    [CrossRef]
  2. A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol. 47, 3679-3689 (2002).
    [CrossRef] [PubMed]
  3. M. Tani, M. Herrmann, and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol. 13, 1739-1745 (2002).
    [CrossRef]
  4. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P.Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
    [CrossRef] [PubMed]
  5. R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
    [CrossRef]
  6. M. R. X. de Barros and P. C. Becker, "Two-color synchronously mode-locked femtosecond Ti: sapphire laser," Opt. Lett. 18, 831-833 (1993).
    [CrossRef]
  7. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, "Dual-wavelength self-mode-locked Ti: sapphire laser," Opt. Lett. 18, 1074-1076 (1993).
    [CrossRef] [PubMed]
  8. D. R. Dykaar, S. B. Darack, and W. H. Knox, "Cross-locking dynamics in a two-color mode-locked Ti: sapphire laser," Opt. Lett. 19, 1058-1060 (1994).
    [CrossRef] [PubMed]
  9. A. Leitenstorfer, C. Furst, and A. Laubereau, "Widely tunable two-color mode-locked Ti : sapphire laser with pulse litter of less than 2 fs," Opt. Lett. 20, 916-918 (1995).
    [CrossRef] [PubMed]
  10. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, "Femtosecond infrared pulses tunable from 9 to 18 ? m at an 88-MHz repetition rate," Opt. Lett. 23, 861-863 (1995).
    [CrossRef]
  11. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
    [CrossRef]
  12. M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
    [CrossRef]
  13. C. L. Pan and C. L. Wang, "A novel tunable dual-wavelength external-cavity laser diode array and its applications," Opt. Quantum Electron. 28, 1239-1257 (1996).
    [CrossRef]
  14. T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
    [CrossRef]
  15. S. Matsuura, M. Tani, and K. Sakai, "Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas," Appl. Phys. Lett. 70, 559-561 (1997).
    [CrossRef]
  16. E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
    [CrossRef]
  17. K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
    [CrossRef]
  18. P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
    [CrossRef]
  19. F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
    [CrossRef]

2002 (4)

A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol. 47, 3679-3689 (2002).
[CrossRef] [PubMed]

M. Tani, M. Herrmann, and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol. 13, 1739-1745 (2002).
[CrossRef]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P.Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P.Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

1999 (1)

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
[CrossRef]

1997 (4)

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, "Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas," Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
[CrossRef]

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

1996 (2)

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

C. L. Pan and C. L. Wang, "A novel tunable dual-wavelength external-cavity laser diode array and its applications," Opt. Quantum Electron. 28, 1239-1257 (1996).
[CrossRef]

1995 (4)

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

A. Leitenstorfer, C. Furst, and A. Laubereau, "Widely tunable two-color mode-locked Ti : sapphire laser with pulse litter of less than 2 fs," Opt. Lett. 20, 916-918 (1995).
[CrossRef] [PubMed]

R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, "Femtosecond infrared pulses tunable from 9 to 18 ? m at an 88-MHz repetition rate," Opt. Lett. 23, 861-863 (1995).
[CrossRef]

1994 (1)

1993 (2)

M. R. X. de Barros and P. C. Becker, "Two-color synchronously mode-locked femtosecond Ti: sapphire laser," Opt. Lett. 18, 831-833 (1993).
[CrossRef]

J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, "Dual-wavelength self-mode-locked Ti: sapphire laser," Opt. Lett. 18, 1074-1076 (1993).
[CrossRef] [PubMed]

1975 (1)

D. H. Auston, "Picosecond optoelectronic switching and gating in silicon, " Appl. Phys. Lett. 26, 101-103 (1975).
[CrossRef]

Auston, D. H.

D. H. Auston, "Picosecond optoelectronic switching and gating in silicon, " Appl. Phys. Lett. 26, 101-103 (1975).
[CrossRef]

Becker, P. C.

M. R. X. de Barros and P. C. Becker, "Two-color synchronously mode-locked femtosecond Ti: sapphire laser," Opt. Lett. 18, 831-833 (1993).
[CrossRef]

Beere, H. E.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Beltram, F.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Blake, G. A.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

Brown, E. R.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Burns, D.

Carr, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P.Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Chen, P.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

Chou, S. Y.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

Darack, S. B.

Davies, A. G.

A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol. 47, 3679-3689 (2002).
[CrossRef] [PubMed]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

de Barros, M. R. X.

M. R. X. de Barros and P. C. Becker, "Two-color synchronously mode-locked femtosecond Ti: sapphire laser," Opt. Lett. 18, 831-833 (1993).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

DiNatale, W. F.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Dykaar, D. R.

Elsaesser, T.

Evans, J. M.

Gaidis, M. C.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

Hangyo, M.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
[CrossRef]

Hasselbeck, M. P.

Herrmann, M.

M. Tani, M. Herrmann, and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol. 13, 1739-1745 (2002).
[CrossRef]

Hidaka, T.

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
[CrossRef]

Hyodo, M.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

Iotti, R. C.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Johnston, M. B.

A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol. 47, 3679-3689 (2002).
[CrossRef] [PubMed]

Joschko, M.

Kaindl, R. A.

Knox, W. H.

Koehler, R.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Leitenstorfer, A.

Leonhardt, R.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
[CrossRef]

Linfield, E. H.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol. 47, 3679-3689 (2002).
[CrossRef] [PubMed]

Lyszczarz, T. M.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Matsuura, S.

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, "Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas," Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

Mclntosh, K. A.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

McMahon, O. B.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Michael, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P.Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

Nichols, K. B.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Onodera, N.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

Pan, C. L.

C. L. Pan and C. L. Wang, "A novel tunable dual-wavelength external-cavity laser diode array and its applications," Opt. Quantum Electron. 28, 1239-1257 (1996).
[CrossRef]

Ritchie, D. A.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Roskos, H. G.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
[CrossRef]

Rossi, F.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Sakai, K.

M. Tani, M. Herrmann, and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol. 13, 1739-1745 (2002).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
[CrossRef]

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, "Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas," Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

Sibbett, W.

Siebe, F.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
[CrossRef]

Siebert, K.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
[CrossRef]

Smith, D. C.

Spence, D. E.

Tani, M.

M. Tani, M. Herrmann, and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol. 13, 1739-1745 (2002).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, "Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas," Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

Tredicucci, A.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Wang, C. L.

C. L. Pan and C. L. Wang, "A novel tunable dual-wavelength external-cavity laser diode array and its applications," Opt. Quantum Electron. 28, 1239-1257 (1996).
[CrossRef]

Woerner, M.

Appl. Phys. Lett. (5)

D. H. Auston, "Picosecond optoelectronic switching and gating in silicon, " Appl. Phys. Lett. 26, 101-103 (1975).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, "Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas," Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. l. Nathan, and F. Williamson, "Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 71, 1601-1603 (1997).
[CrossRef]

Electron Lett. (1)

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, "Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser," Electron Lett. 32, 1589-1591 (1996).
[CrossRef]

Electron. Lett. (1)

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a twolongitudinal-mode laser diode," Electron. Lett. 33, 2039-2040 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, "A fully tunable dual-color CW Ti: Al2O3 laser," IEEE J. Quantum Electron. 35, 1731-1736 (1999).
[CrossRef]

IEEE Microwave Guid. Wave Lett. (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, "Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna," IEEE Microwave Guid. Wave Lett. 7, 282-284 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

M. Tani, M. Herrmann, and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol. 13, 1739-1745 (2002).
[CrossRef]

Nature (2)

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P.Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
[CrossRef] [PubMed]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

C. L. Pan and C. L. Wang, "A novel tunable dual-wavelength external-cavity laser diode array and its applications," Opt. Quantum Electron. 28, 1239-1257 (1996).
[CrossRef]

Phys. Med. Biol. (1)

A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Phys. Med. Biol. 47, 3679-3689 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Schematics of the resonator design of the collinear dual-wavelength CW Ti:sapphire laser. M1 and M2 are the curvature mirrors. M3 is the output coupler with 800 nm coating. M4 is the total-reflectivity end mirror. P1 and P2 are the prisms. L1 is the lens for Ar+ laser. d is the distance between P1 and P2.

Fig. 2.
Fig. 2.

Spectral separation of the dual-wavelength output of the CW Ti:sapphire laser can be tuned from 10 nm to 110 nm in the case of d=20 cm (the distance between P1 and P2 in Fig. 1).

Fig. 3.
Fig. 3.

Total output power of the tunable dual-wavelength CW Ti:sapphire laser as a function of the difference wavelength (Δλ). The solid squares, open circles, and solid triangles represent that the output power in the distance between two prisms (P1 and P2 in Fig. 1) are 20 cm, 30 cm, and 60 cm, respectively. The inset shows Δλ dependence of the normalized fluctuations of the output power (ΔP/P) for each wavelength.

Fig. 4.
Fig. 4.

(Color online) The beam width as function of the distance (z) from output coupler (M3 in Fig. 1). The solid line represents w(1+(λz/πw 2)2)0.5, where w=0.3 mm and λ=800 nm. The insets show the spatial mode of the output laser beam from the collinear tunable dual-wavelength CW Ti:sapphire laser. (a) Measured just after the output coupler (M3 in Fig. 1) without additional prisms. (b) Measured after one prism set just after the output coupler for separating two wavelength components in free space.

Metrics