Abstract

We present a novel characterization method for semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) switches which combines a pump-probe measurement with an interferometer bias scan. In addition to a wealth of information on the switching dynamics for all operating points of the switch, we can create an extinction map to pinpoint regions of highest extinction for optimizing all-optical ultrafast switching. We experimentally verify the accuracy of this characterization method by performing a wavelength characterization at the optimal bias point and a nearby, non-optimal point. A 1-dB penalty was observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, Y. Ueno, and K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated Symmetric-Mach-Zehnder switch," in Optical Fiber Communications Conference (OFC ’02), Postdeadline Papers, FD3 (2000).
  2. M. Heid, S. L. Jansen, S. Spälter, E. Meissner, W. Vogt, and H. Melchior, "160-Gbit/s demultiplexing to base rates of 10 and 40 Gbit/s with a monolithically integrated SOA-Mach-Zehnder interferometer," in 28th European Conference on Optical Communication (ECOC ’02) 3, 1-2 (2002).
  3. H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
    [CrossRef]
  4. B. Lavigne, P. Guerber, P. Brindel, E. Balmefrezol, and B. Dagens, "Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach-Zehnder interferometers," in 27th European Conference on Optical Communication (ECOC 2001) 3, 290-291 (2001).
  5. J. P. Wang, S. J. Savage, B. S. Robinson, S. A. Hamilton, E. P. Ippen, R. Mu, H. Wang, L. Spiekman, and B. Stefanov, "Regeneration using an SOA-MZI in a 100-pass 10,000-km Recirculating Fiber Loop," in Conference on Lasers and Electro-optics (CLEO 2007), CMZ1 (2007).
  6. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
    [CrossRef]

2006

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

1994

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Darwish, A. M.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Dong, H.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

Dutta, N. K.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

Hall, K. L.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Ippen, E. P.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Jacques, J.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

Lenz, G.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Sun, H.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

Wang, Q.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

Opt. Commun.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques, "80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun. 265, 79-83 (2006).
[CrossRef]

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Other

B. Lavigne, P. Guerber, P. Brindel, E. Balmefrezol, and B. Dagens, "Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach-Zehnder interferometers," in 27th European Conference on Optical Communication (ECOC 2001) 3, 290-291 (2001).

J. P. Wang, S. J. Savage, B. S. Robinson, S. A. Hamilton, E. P. Ippen, R. Mu, H. Wang, L. Spiekman, and B. Stefanov, "Regeneration using an SOA-MZI in a 100-pass 10,000-km Recirculating Fiber Loop," in Conference on Lasers and Electro-optics (CLEO 2007), CMZ1 (2007).

S. Nakamura, Y. Ueno, and K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated Symmetric-Mach-Zehnder switch," in Optical Fiber Communications Conference (OFC ’02), Postdeadline Papers, FD3 (2000).

M. Heid, S. L. Jansen, S. Spälter, E. Meissner, W. Vogt, and H. Melchior, "160-Gbit/s demultiplexing to base rates of 10 and 40 Gbit/s with a monolithically integrated SOA-Mach-Zehnder interferometer," in 28th European Conference on Optical Communication (ECOC ’02) 3, 1-2 (2002).

Supplementary Material (1)

» Media 1: AVI (447 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI). SOAs 4,5 perform switching while SOAs 1-3, and 6 amplify. SOA 3 is not used in single-ended operation. BPF is a band-pass filter.

Fig. 2.
Fig. 2.

(a)Experimental schematic for the pump-probe bias scan. Static pump-probe bias scans are made without the control pulse. Dynamic bias scans are made with the addition of the control pulse. BPF is band-pass filter. τ is the signal-control delay. (b)Static bias map of the SOA-MZI interferometer. Areas of constructive interference show up as deep red while areas of destructive interference show up as deep blue.

Fig. 3.
Fig. 3.

(a) Dynamic bias map of the SOA-MZI interferometer. (b) Relative signal and control pulse positions corresponding to each frame of the bias map. (c) Switching window plot at position “X”. (Size: 446 KB.) [Media 1]

Fig. 4.
Fig. 4.

(a) Extinction map. Regions of high extinction (red) are separated by regions of low extinction (blue). (b) Bit-error rate plot of wavelength conversion performed at the optimal operating point for non-inverting switch operation (square) as compared with wavelength conversion performed at a nearby non-optimal point (triangle).

Metrics