Abstract
We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the groupvelocity mismatch (GVM) is strong. This inhibits efficient compression. Ramanlike perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higherorder dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that it is theoretically possible to reach the singlecycle regime by compressing highenergy fs pulses for wavelengths λ=1.01.3 µm in a βbariumborate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. However, the simulations show that reaching singlecycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higherorder dispersion into account.
© 2008 Optical Society of America
Full Article  PDF ArticleOSA Recommended Articles
M. Bache, J. Moses, and F. W. Wise
J. Opt. Soc. Am. B 24(10) 27522762 (2007)
M. Bache, O. Bang, J. Moses, and F. W. Wise
Opt. Lett. 32(17) 24902492 (2007)
Morten Bache
J. Opt. Soc. Am. B 26(3) 460470 (2009)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 G. P. Agrawal, Applications of nonlinear fiber optics (Academic Press, London, 2001).
 L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref] 
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]  S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]  J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).

J. Moses and F. W. Wise, “Soliton compression in quadratic media: highenergy fewcycle pulses with a frequencydoubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[Crossref] [PubMed] 
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref] [PubMed] 
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref] [PubMed]  G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref] 
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref] [PubMed] 
M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007), arXiv:0706.1507.
[Crossref] 
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref] [PubMed]  C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and Induced Kerr effects in quasiphasematched Quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[Crossref] 
X. Liu, L. Qian, and F. W. Wise, “Highenergy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]  P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]  L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref] 
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]  N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]  W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]  J. Moses and F. W. Wise, “Controllable selfsteepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006), see also arXiv:physics/0604170.
[Crossref] [PubMed]  V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, 1999).
 On dimensional form R(t)=R(t/Tin)/Tin, which is independent on Tin since τa,b in Eqs. (10,12) must be replaced by the dimensional form ta,b=τa,bTin. In the frequency domain both R̃ and R̃ are dimensionless.
 W. Krolikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E 63, 016610 (2000).
[Crossref]  M. Bache, O. Bang, and W. Krolikowski, (2008), in preparation.
 The factor sa on the RHS of Eq. (17) was unfortunately lost during the proofs in Eq. (12) of Ref. [10].
 These experiments were actually done in the nonstationary regime according to the nonlocal theory.
 This is a typical experimental situation: the optimal compression point zopt scales with Neff [11], and since the nonlinear crystal length is a constant parameter one adjusts the intensity so zopt coincides with the crystal length.
 A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]  W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref] 
I. V. Shadrivov and A. A. Zharov, “Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media,” J. Opt. Soc. Am. B 19, 596–602 (2002).
[Crossref]  N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]  D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed] 
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]  K. C. Chan and M. S. F. Liu, “Shortpulse generation by higherorder solitoneffect compression: Effects of fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref] 
K.T. Chan and W.H. Cao, “Improved solitoneffect pulse compression by combined action of negative thirdorder dispersion and Raman selfscattering in optical fibers,” J. Opt. Soc. Am. B 15, 2371–2376.

M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref] [PubMed]
2007 (4)
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref]
[PubMed]
M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007), arXiv:0706.1507.
[Crossref]
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref]
[PubMed]
2006 (4)
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
J. Moses and F. W. Wise, “Soliton compression in quadratic media: highenergy fewcycle pulses with a frequencydoubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[Crossref]
[PubMed]
J. Moses and F. W. Wise, “Controllable selfsteepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006), see also arXiv:physics/0604170.
[Crossref]
[PubMed]
M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref]
[PubMed]
2004 (3)
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
2003 (3)
N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]
D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]
[PubMed]
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]
2002 (2)
I. V. Shadrivov and A. A. Zharov, “Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media,” J. Opt. Soc. Am. B 19, 596–602 (2002).
[Crossref]
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]
2001 (2)
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref]
2000 (1)
W. Krolikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E 63, 016610 (2000).
[Crossref]
1999 (1)
X. Liu, L. Qian, and F. W. Wise, “Highenergy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]
1997 (3)
C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and Induced Kerr effects in quasiphasematched Quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[Crossref]
L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref]
A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]
1995 (2)
N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]
[PubMed]
K. C. Chan and M. S. F. Liu, “Shortpulse generation by higherorder solitoneffect compression: Effects of fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]
1992 (1)
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
1980 (1)
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
Agrawal, G. P.
G. P. Agrawal, Applications of nonlinear fiber optics (Academic Press, London, 2001).
Akhmediev, N.
N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]
[PubMed]
Alhammali, E.
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref]
[PubMed]
Ashihara, S.
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]
Bache, M.
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref]
[PubMed]
M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007), arXiv:0706.1507.
[Crossref]
M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref]
[PubMed]
M. Bache, O. Bang, and W. Krolikowski, (2008), in preparation.
Bang, O.
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref]
[PubMed]
M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref]
[PubMed]
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]
W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref]
W. Krolikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E 63, 016610 (2000).
[Crossref]
C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and Induced Kerr effects in quasiphasematched Quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[Crossref]
L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref]
M. Bache, O. Bang, and W. Krolikowski, (2008), in preparation.
Beckwitt, K.
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
Bergé, L.
L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref]
Bramati, A.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Cao, W.H.
Cha, M.
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
Chan, K. C.
K. C. Chan and M. S. F. Liu, “Shortpulse generation by higherorder solitoneffect compression: Effects of fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]
Chan, K.T.
Chen, Y.F.
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
Chinaglia, W.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Clausen, C. B.
C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and Induced Kerr effects in quasiphasematched Quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[Crossref]
Conti, C.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Cristiani, I.
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]
Degiorgio, V.
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]
DeSalvo, R.
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
Di Trapani, P.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Dmitriev, V.
V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, 1999).
Edmundson, D.
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
Eichenholz, J. M.
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref]
[PubMed]
Fujioka, N.
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
Gordon, J. P.
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
Gurzadyan, G.
V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, 1999).
Hagan, D.
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
Hong, K.H.
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Hou, B.
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Ilday, F. Ö.
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
Karlsson, M.
N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]
[PubMed]
Kilius, J.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Kitamura, K.
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
Kivshar, Y. S.
C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and Induced Kerr effects in quasiphasematched Quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[Crossref]
Knight, J. C.
D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]
[PubMed]
Krolikowski, W.
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]
W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref]
W. Krolikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E 63, 016610 (2000).
[Crossref]
M. Bache, O. Bang, and W. Krolikowski, (2008), in preparation.
Kurimura, S.
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
Kuroda, K.
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]
Lægsgaard, J.
M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref]
[PubMed]
Lim, H.
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
Liu, M. S. F.
K. C. Chan and M. S. F. Liu, “Shortpulse generation by higherorder solitoneffect compression: Effects of fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]
Liu, X.
X. Liu, L. Qian, and F. W. Wise, “Highenergy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]
Luan, F.
D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]
[PubMed]
Mezentsev, V. K.
L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref]
Minardi, S.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Mitchell, D. J.
A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]
Mollenauer, L. F.
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
Moses, J.
M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007), arXiv:0706.1507.
[Crossref]
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref]
[PubMed]
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref]
[PubMed]
J. Moses and F. W. Wise, “Soliton compression in quadratic media: highenergy fewcycle pulses with a frequencydoubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[Crossref]
[PubMed]
J. Moses and F. W. Wise, “Controllable selfsteepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006), see also arXiv:physics/0604170.
[Crossref]
[PubMed]
Moses, J. A.
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Mourou, G.
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Nees, J.
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Neshev, D.
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]
Nielsen, H.
M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref]
[PubMed]
Nikogosyan, D.
V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, 1999).
Nikolov, N.
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
Nikolov, N. I.
N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]
Nishina, J.
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]
Qian, L.
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
X. Liu, L. Qian, and F. W. Wise, “Highenergy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]
Rasmussen, J.
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
Rasmussen, J. J.
W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref]
L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref]
Russell, P. S. J.
D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]
[PubMed]
Shadrivov, I. V.
I. V. Shadrivov and A. A. Zharov, “Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media,” J. Opt. Soc. Am. B 19, 596–602 (2002).
[Crossref]
SheikBahae, M.
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
Shimura, T.
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]
Skryabin, D. V.
D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]
[PubMed]
Snyder, A. W.
A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]
Stegeman, G.
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
Stolen, R. H.
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
Taira, T.
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
Tang, D.
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
Tartara, L.
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]
Tediosi, R.
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]
Trillo, S.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Valiulis, G.
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
Van Stryland, E. W.
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
Vanherzeele, H.
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
Wise, F. W.
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref]
[PubMed]
M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007), arXiv:0706.1507.
[Crossref]
J. Moses and F. W. Wise, “Soliton compression in quadratic media: highenergy fewcycle pulses with a frequencydoubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[Crossref]
[PubMed]
J. Moses and F. W. Wise, “Controllable selfsteepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006), see also arXiv:physics/0604170.
[Crossref]
[PubMed]
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
X. Liu, L. Qian, and F. W. Wise, “Highenergy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Wise, F.W.
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref]
[PubMed]
Wyller, J.
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref]
Xie, G.
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
Yu, N. E.
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
Zeng, X.
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
Zhang, D.
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
Zharov, A. A.
I. V. Shadrivov and A. A. Zharov, “Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media,” J. Opt. Soc. Am. B 19, 596–602 (2002).
[Crossref]
Zhu, H.
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
Appl. Phys. Lett. (1)
S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004).
[Crossref]
IEEE J. Quantum Electron. (1)
K. C. Chan and M. S. F. Liu, “Shortpulse generation by higherorder solitoneffect compression: Effects of fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[Crossref]
J. Opt. B: Quantum Semiclass. Opt (1)
W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004).
[Crossref]
J. Opt. Soc. Am. B (5)
I. V. Shadrivov and A. A. Zharov, “Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media,” J. Opt. Soc. Am. B 19, 596–602 (2002).
[Crossref]
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]
M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007), arXiv:0706.1507.
[Crossref]
F. Ö. Ilday, K. Beckwitt, Y.F. Chen, H. Lim, and F. W. Wise, “Controllable Ramanlike nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]
Opt. Commun. (1)
G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multistage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007).
[Crossref]
Opt. Express (2)
X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasiphasematching gratings,” Opt. Express 14, 9358–9370 (2006).
[Crossref]
[PubMed]
I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003).
[Crossref]
Opt. Lett. (6)
M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero groupvelocity mismatch,” Opt. Lett. 31, 1612–1614 (2006), arXiv:physics/0511244.
[Crossref]
[PubMed]
J. Moses and F. W. Wise, “Soliton compression in quadratic media: highenergy fewcycle pulses with a frequencydoubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[Crossref]
[PubMed]
J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient highenergy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007).
[Crossref]
[PubMed]
M. Bache, O. Bang, J. Moses, and F.W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007), arXiv:0706.1933.
[Crossref]
[PubMed]
R. DeSalvo, D. Hagan, M. SheikBahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Selffocusing and selfdefocusing by cascaded secondorder effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]
[PubMed]
X. Liu, L. Qian, and F. W. Wise, “Highenergy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]
Phys. Rev. A (1)
N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]
[PubMed]
Phys. Rev. E (4)
L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Selffocusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E 55, 3555–3570 (1997).
[Crossref]
W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001).
[Crossref]
W. Krolikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E 63, 016610 (2000).
[Crossref]
N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003).
[Crossref]
Phys. Rev. Lett. (4)
P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001).
[Crossref]
C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and Induced Kerr effects in quasiphasematched Quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[Crossref]
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
J. Moses and F. W. Wise, “Controllable selfsteepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006), see also arXiv:physics/0604170.
[Crossref]
[PubMed]
Science (2)
A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]
D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton selffrequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref]
[PubMed]
Other (8)
V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, 1999).
On dimensional form R(t)=R(t/Tin)/Tin, which is independent on Tin since τa,b in Eqs. (10,12) must be replaced by the dimensional form ta,b=τa,bTin. In the frequency domain both R̃ and R̃ are dimensionless.
M. Bache, O. Bang, and W. Krolikowski, (2008), in preparation.
The factor sa on the RHS of Eq. (17) was unfortunately lost during the proofs in Eq. (12) of Ref. [10].
These experiments were actually done in the nonstationary regime according to the nonlocal theory.
This is a typical experimental situation: the optimal compression point zopt scales with Neff [11], and since the nonlinear crystal length is a constant parameter one adjusts the intensity so zopt coincides with the crystal length.
G. P. Agrawal, Applications of nonlinear fiber optics (Academic Press, London, 2001).
J. A. Moses, J. Nees, B. Hou, K.H. Hong, G. Mourou, and F. W. Wise, “Chirpedpulse cascaded quadratic compression of 1mJ, 35fs pulses with low wavefront distortions,” In Conference on Lasers and ElectroOptics, p. CTuS5 (Optical Society of America, 2005).
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (5)
Numerical simulations of soliton compression of a
The dimensional nonlocal response functions [22] in the (a,b) stationary regime (
Data from numerical simulations of the full SEWA Eqs. (1) using the same parameters as in Fig. 1 and varying Δ
Data from the numerical results in Fig. 3 for selected values of Δ
Results of pulse compression simulations as in Fig. 3, taking Δ
Equations (21)
Equations on this page are rendered with MathJax. Learn more.