Abstract

We present a new type of photonic structures in quadratic nonlinear materials that enable efficient and continuous all-optical deflection. The structures are based on two-dimensional modulation of the nonlinear coefficient and consist of a set of symmetric or anti-symmetric arcs that form a periodic pattern in the propagation direction and a chirped pattern in the transverse direction. Stoichiometric lithium tantalite structures were tested by second harmonic generation. Varying the pump wavelength from 1545 nm to 1536 nm resulted in continuous angular deflection of the second harmonic wave up to ~2.3°. Continuous deflection was also obtained by varying the crystal temperature at a fixed pump wavelength.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  2. V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
    [CrossRef]
  3. A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Opt. Quantum Electron. 39, 361-375 (2007).
    [CrossRef]
  4. S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
    [CrossRef]
  5. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
    [CrossRef] [PubMed]
  6. R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion", Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef] [PubMed]
  7. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, "Experimental confirmation of the general solution to the multiple phase matching problem," J. Opt. Soc. Am. B 24, 1916-1921 (2007).
    [CrossRef]
  8. Y. Li, D. Y. Chen, L. Yang, and R. R. Alfano, "Ultrafast all-optical deflection based on an induced area modulation in nonlinear materials," Opt. Lett. 16, 438-440 (1991).
    [CrossRef] [PubMed]
  9. G. Stegeman, D. Hagan, and L. Torner, "?(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
    [CrossRef]
  10. S. M. Saltiel and Y. S. Kivshar, "All-optical deflection and splitting by second-order cascading," Opt. Lett. 27, 921-923 (2002).
    [CrossRef]
  11. T. Pertsch, R. Iwanow, R. Schiek, G. I. Stegeman, U. Peschel, F. Lederer, Y. H. Min, and W. Sohler, "Spatial ultrafast switching and frequency conversion in lithium niobate waveguide arrays," Opt. Lett. 30, 177-179 (2005).
    [CrossRef] [PubMed]
  12. V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  13. O. Limon, A. Rudnitsky, Z. Zalevsky, M. Nathan, L. Businaro, D. Cojoc, and A. Gerardino, "All-optical nano modulator on a silicon chip," Opt. Express 15, 9029-9039 (2007).
    [CrossRef] [PubMed]
  14. T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
    [CrossRef]
  15. D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, "Annular symmetry nonlinear frequency converters," Opt. Express 14, 9371-9376 (2006).
    [CrossRef] [PubMed]
  16. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
    [CrossRef]
  17. T. Ellenbogen, A. Arie, and S. M. Saltiel, "Non-collinear double quasi phase matching in one dimensional poled crystals," Opt. Lett. 32, 262-264 (2007).
    [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1995).
  19. A. Bruner, D. Eger and S. Ruschin, "Second harmonic generation of green light in periodically-poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7445-7449 (2004).
    [CrossRef]
  20. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, "Quasi-phase-matching engineering for spatial control of entangled two-photon states," Opt. Lett. 29, 376-378 (2004).
    [CrossRef] [PubMed]

2007 (4)

2006 (1)

2005 (3)

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

T. Pertsch, R. Iwanow, R. Schiek, G. I. Stegeman, U. Peschel, F. Lederer, Y. H. Min, and W. Sohler, "Spatial ultrafast switching and frequency conversion in lithium niobate waveguide arrays," Opt. Lett. 30, 177-179 (2005).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion", Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

2004 (3)

V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
[CrossRef] [PubMed]

A. Bruner, D. Eger and S. Ruschin, "Second harmonic generation of green light in periodically-poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7445-7449 (2004).
[CrossRef]

J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, "Quasi-phase-matching engineering for spatial control of entangled two-photon states," Opt. Lett. 29, 376-378 (2004).
[CrossRef] [PubMed]

2002 (2)

S. M. Saltiel and Y. S. Kivshar, "All-optical deflection and splitting by second-order cascading," Opt. Lett. 27, 921-923 (2002).
[CrossRef]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef] [PubMed]

1999 (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
[CrossRef]

1998 (1)

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

1997 (1)

S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
[CrossRef]

1996 (1)

G. Stegeman, D. Hagan, and L. Torner, "?(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1991 (1)

Alexandrescu, A.

Alfano, R. R.

Almeida, V. R.

V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
[CrossRef] [PubMed]

Arie, A.

A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Opt. Quantum Electron. 39, 361-375 (2007).
[CrossRef]

T. Ellenbogen, A. Arie, and S. M. Saltiel, "Non-collinear double quasi phase matching in one dimensional poled crystals," Opt. Lett. 32, 262-264 (2007).
[CrossRef] [PubMed]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, "Experimental confirmation of the general solution to the multiple phase matching problem," J. Opt. Soc. Am. B 24, 1916-1921 (2007).
[CrossRef]

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, "Annular symmetry nonlinear frequency converters," Opt. Express 14, 9371-9376 (2006).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion", Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef] [PubMed]

Bahabad, A.

A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Opt. Quantum Electron. 39, 361-375 (2007).
[CrossRef]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, "Experimental confirmation of the general solution to the multiple phase matching problem," J. Opt. Soc. Am. B 24, 1916-1921 (2007).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion", Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Barrios, C. A.

V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
[CrossRef] [PubMed]

Berger, V.

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

Bruner, A.

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, "Annular symmetry nonlinear frequency converters," Opt. Express 14, 9371-9376 (2006).
[CrossRef] [PubMed]

A. Bruner, D. Eger and S. Ruschin, "Second harmonic generation of green light in periodically-poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7445-7449 (2004).
[CrossRef]

Businaro, L.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Carrasco, S.

Chen, D. Y.

Cheng, B.

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Cojoc, D.

Eger, D.

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, "Annular symmetry nonlinear frequency converters," Opt. Express 14, 9371-9376 (2006).
[CrossRef] [PubMed]

A. Bruner, D. Eger and S. Ruschin, "Second harmonic generation of green light in periodically-poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7445-7449 (2004).
[CrossRef]

Ellenbogen, T.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Fradkin-Kashi, K.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef] [PubMed]

Furukawa, Y.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
[CrossRef]

Gerardino, A.

Habshoosh, N.

A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Opt. Quantum Electron. 39, 361-375 (2007).
[CrossRef]

Hagan, D.

G. Stegeman, D. Hagan, and L. Torner, "?(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Iwanow, R.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Kasimov, D.

Kitamura, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
[CrossRef]

Kivshar, Y. S.

Lederer, F.

Li, Y.

Lifshitz, R.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, "Experimental confirmation of the general solution to the multiple phase matching problem," J. Opt. Soc. Am. B 24, 1916-1921 (2007).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion", Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Limon, O.

Lipson, M.

V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
[CrossRef] [PubMed]

Ma, B.

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Min, Y. H.

Ming, N. B.

S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
[CrossRef]

Nathan, M.

Ni, P.

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Niwa, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
[CrossRef]

Panepucci, R. R.

V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
[CrossRef] [PubMed]

Pertsch, T.

Peschel, U.

Rosenman, G.

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, "Annular symmetry nonlinear frequency converters," Opt. Express 14, 9371-9376 (2006).
[CrossRef] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef] [PubMed]

Rudnitsky, A.

Ruschin, S.

A. Bruner, D. Eger and S. Ruschin, "Second harmonic generation of green light in periodically-poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7445-7449 (2004).
[CrossRef]

Saltiel, S. M.

Schiek, R.

Shaier, P.

Sheng, Y.

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Sohler, W.

Stegeman, G.

G. Stegeman, D. Hagan, and L. Torner, "?(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Stegeman, G. I.

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
[CrossRef]

Torner, L.

J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, "Quasi-phase-matching engineering for spatial control of entangled two-photon states," Opt. Lett. 29, 376-378 (2004).
[CrossRef] [PubMed]

G. Stegeman, D. Hagan, and L. Torner, "?(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Torres, J. P.

Urenski, P.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef] [PubMed]

Voloch, N.

Wang, T.

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Winebrand, E.

Yang, L.

Zalevsky, Z.

Zhang, D.

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Zhu, S.

S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
[CrossRef]

Zhu, Y. Y.

S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi phase matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

A. Bruner, D. Eger and S. Ruschin, "Second harmonic generation of green light in periodically-poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7445-7449 (2004).
[CrossRef]

J. Cryst. Growth (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

V. R.  Almeida, C. A.  Barrios, R. R.  Panepucci, and M.  Lipson, "All-optical control of light on a silicon chip," Nature  431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

T.  Wang, B.  Ma, Y.  Sheng, P.  Ni, B.  Cheng, and D.  Zhang, "Large-angle acceptance of quasi-phase-matched second-harmonic generation in homocentrically poled LiNbO3," Opt. Commun.  252, 397-401 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Quantum Electron. (2)

G. Stegeman, D. Hagan, and L. Torner, "?(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Opt. Quantum Electron. 39, 361-375 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion", Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Science (1)

S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1995).

Supplementary Material (1)

» Media 1: AVI (1486 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Three schemes of nonlinear structures (top line), wave-vector diagrams for SHG processes of a plane wave (2nd line), schemes of a finite beam width wave propagating in the structures (3rd line) and the corresponding wave-vector diagrams (4th line) in: (a) onedimensional periodically poled structure, (b) annularly poled structure, and (c) the proposed structure for continuous AOD.

Fig. 2.
Fig. 2.

(a).–(c). Three options for periodic structures, their numerical Fourier transform (3rd order vectors were color enhanced for viewing purposes) and first order vectorial phase matching schemes: (a) One-dimensional periodically poled structure, (b) The proposed symmetric structure and (c) The proposed anti-symmetric structure. (d) Wavelength dependence of the second harmonic deflection angle for continuous AOD structures with different periods Λ [µm].

Fig. 3.
Fig. 3.

(a). Microscope photograph of the C- side of the crystal, after selective etching (which reveals the inverted domain pattern). The Y axis was slightly resized for viewing purposes. The entire width of the channel is 200 µm. (b) Experimental setup. Inset (1.5 MB) Movie of alloptical second harmonic deflection. [Media 1]

Fig. 4.
Fig. 4.

Experimental (dots) and calculated (dashed line) deflection angle of the second harmonic as a function of (a) pump wavelength and (b) crystal temperature. (c) Normalized efficiency of the deflection process vs. pump wavelength. Photos on the left and bottom show the deflection of the second harmonic output for pump wavelength and crystal thermal modulation, respectively.

Fig. 5.
Fig. 5.

A proposed configuration for an all-optical router using the presented nonlinear AOD crystal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k G = k 2 2 k 1
χ ( 2 ) ( x , y ) = sign { cos [ 2 π ( f x x + f yy y 2 ) ] }
cos ρ = 2 k 1 + G m k 2

Metrics