Abstract

We present a high-temperature-resistant distributed Bragg reflector fiber laser photowritten in Er/Yb codoped phosphosilicate fiber that is capable of long-term operation at 500 °C. Highly saturated Bragg gratings are directly inscribed into the Er/Yb fiber without hydrogen loading by using a 193 nm excimer laser and phase mask method. After annealing at elevated temperature, the remained gratings are strong enough for laser oscillation. The laser operates in robust single mode with output power more than 1 dBm and signal-to-noise ratio better than 70 dB over the entire temperature range from room temperature to 500 °C.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O’Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE Conf. Fiber Optic Sensor Technology and Applications 3860, (Boston, MA, 1999), 55-66.
  2. S. W. Lovseth, J. T. Kringlebotn, E. Ronnekleiv, and K. Blotekjaer, "Fiber distributed-feedback lasers as acoustic sensors in air," Appl. Opt. 38, 4821-4831 (1999).
    [CrossRef]
  3. R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
    [CrossRef]
  4. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
    [CrossRef]
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  6. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
    [CrossRef]
  7. J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
    [CrossRef]
  8. W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, "High performance single frequency fiber grating-based Erbium/Ytterbium-codoped fiber lasers," J. Lightwave Technol. 16, 114-118 (1998).
    [CrossRef]
  9. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, "Low-noise narrow-linewidth fiber laser at 1550nm," J. Lightwave Technol. 22, 57-62 (2004).
    [CrossRef]
  10. Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range," Opt. Express 15, 363-370 (2007).
    [CrossRef] [PubMed]
  11. W. H. Loh, L. Dong, and J. E. Caplen, "Single-sided output Sn/Er/Yb distributed feedback fiber laser," Appl. Phys. Lett. 69, 2151-2153(1996).
    [CrossRef]
  12. Y. O. Barmenkov, D. Zalvidea, S.T. Peiro, J. L. Cruz, and M.V. Andres, "Effective length of short Fabry-Port cavity formed by uniform fiber Bragg gratings," Opt. Express 14, 6394-6399 (2006).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
[CrossRef]

2004 (1)

2003 (1)

R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1996 (1)

W. H. Loh, L. Dong, and J. E. Caplen, "Single-sided output Sn/Er/Yb distributed feedback fiber laser," Appl. Phys. Lett. 69, 2151-2153(1996).
[CrossRef]

1994 (1)

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

1992 (1)

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Andres, M.V.

Archambault, J. L.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Barmenkov, Y. O.

Blotekjaer, K.

Caplen, J. E.

W. H. Loh, L. Dong, and J. E. Caplen, "Single-sided output Sn/Er/Yb distributed feedback fiber laser," Appl. Phys. Lett. 69, 2151-2153(1996).
[CrossRef]

Chan, H. L. W.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
[CrossRef]

Chen, S.

Cowle, G. J.

Crickmore, R. I.

R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
[CrossRef]

Cruz, J. L.

Dakin, J. P.

R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

DiGiovanni, D. J.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Dong, L.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Geng, J.

Grattan, K. T. V.

Guan, B. O.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
[CrossRef]

Gunning, M. J.

R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
[CrossRef]

Hsu, K.

Hu, Y.

Jiang, S.

Kaneda, Y.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kringlebotn, J. T.

S. W. Lovseth, J. T. Kringlebotn, E. Ronnekleiv, and K. Blotekjaer, "Fiber distributed-feedback lasers as acoustic sensors in air," Appl. Opt. 38, 4821-4831 (1999).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

Lau, S. T.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Loh, W. H.

Lovseth, S. W.

Mizrahi, V.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Payne, D. N.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

Peiro, S.T.

Peyghambarian, N.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Qiu, Y.

Reekie, L.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

Ronnekleiv, E.

Samson, B. N.

Shen, Y.

Spiegelberg, C.

Stefanov, J.

R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
[CrossRef]

Sulhoff, J. W.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Sun, T.

Tam, H. Y.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
[CrossRef]

Townsend, J. E.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

Vienne, G. G.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

Wu, B.

Zalvidea, D.

Zhao, W.

Zyskind, J. L.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. H. Loh, L. Dong, and J. E. Caplen, "Single-sided output Sn/Er/Yb distributed feedback fiber laser," Appl. Phys. Lett. 69, 2151-2153(1996).
[CrossRef]

Electron. Lett. (2)

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, "Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser," Electron. Lett. 30, 972-973 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, "Ultrasonic hydrophone based on distributed Bragg reflector fiber laser," IEEE Photon. Technol. Lett. 16, 169-171 (2005).
[CrossRef]

IEEE Sensor J. (1)

R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, "Beat frequency measurement system for multiple dual polarization fiber DFB lasers," IEEE Sensor J. 3, 115-120 (2003).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (1)

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O’Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE Conf. Fiber Optic Sensor Technology and Applications 3860, (Boston, MA, 1999), 55-66.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for the DBR fiber laser inscription.

Fig. 2
Fig. 2

Transmission spectra of the grating during UV inscription at different lengths.

Fig. 3.
Fig. 3.

Peak power and wavelength of the DBR laser versus the scanned length of the output grating.

Fig. 4.
Fig. 4.

Evolution of the laser spectra during the annealing process in which the temperature increased from room temperature to 600 °C.

Fig. 5.
Fig. 5.

Stability of the DBR laser output peak power at 500°C

Fig. 6.
Fig. 6.

The peak power and wavelength of the DBR laser versus temperature.

Fig. 7.
Fig. 7.

The laser spectra at different temperature.

Metrics